Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.47Keywords:
Signal Processing, Deep Learning, Image Segmentation, U-Net Architecture, SynergyDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In recent years, signal processing and deep learning convergence has sparked transformative synergies across various domains, including image and speech recognition, natural language processing, autonomous systems, and healthcare diagnostics. This fusion capitalizes on the strength of signal processing in extracting meaningful features from raw data and the prowess of deep learning in unraveling intricate patterns, driving innovation and research into uncharted territories. This paper explores literature spanning the past three years to illuminate the dynamic landscape of scholarly endeavors that leverage the integration of signal processing techniques within deep learning architectures. The resulting paradigm shift magnifies the precision and efficiency of applications in computer vision, speech and audio processing, natural language comprehension, and interdisciplinary domains like healthcare. Notable advances include synergizing wavelet transformations with convolutional neural networks (CNNs) for enhanced image classification accuracy, integrating spectrogram-based features with deep learning architectures for improved speech-to-text accuracy, and pioneering the fusion of wavelet packet decomposition into recurrent architectures for sentiment analysis. Moreover, the paper delves into developing and evaluating a U-Net neural network model for image segmentation, investigating its performance under varying training conditions using metrics such as confusion matrices, heat maps, and precision-recall curves. The comprehensive survey identifies research gaps, notably within the context of wheat rust detection, and emphasizes the need for tailored innovations to enhance accuracy and efficiency. Overall, the synthesis of signal processing techniques with deep learning architectures propels innovation, poised to address complex challenges across diverse domainsAbstract
How to Cite
Downloads
Similar Articles
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

