Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.44Keywords:
Firefly algorithm, Light intensity, Model-based testing, Multi-objective test suites optimizationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Model-based testing is a crucial but challenging stage of the software development process. The process of model-based testing needsto be optimized, which is a difficult task. In this article, we present an approach for selecting minimum test suites that is based on themeta-heuristic firefly algorithm. We modify the firefly algorithm and define the suitable multi-objective function to optimize the testsuites. The suggested approach uses firefly behavior to address the current issue. The modified approach chooses the best test suitesthat quickly find the maximum coverage in less time.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Ramkumar, K. Aanandha Saravanan, Martin Joel Rathnam, M. Revathy, Integration of AI and agent-based modeling for simulating human-ecological systems , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- S. Ranganathan, V. Umadevi, FDBSCAN-MBKSched: A Hybrid Edge-Cloud Clustering and Energy-Aware Federated Learning Framework with Adaptive Update Scheduling for Healthcare IoT , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Nalini S, Ritha W, Inventory model considering trade discounts and scrap disposal with sustainability , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- V. Baby Deepa, R. Jeya, Dynamic resource allocation with otpimization techniques for qos in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- I. Francina Nishandhi, A Study on an Optimal Four Echelon Inventory Model for Growing Items with Imperfect Quality and Trade Credit Financing , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Bayelign Abebe, Ayalew Ali, Linking globalization to commercial banks’ performance in Ethiopia , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.

