MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.03Keywords:
Cloud Computing; Resource allocation; Cost-based Allocation; Heterogeneous Cloud;Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The cloud is an intelligent technology that provides requested services to users. It offers unlimited services for the users. Many small and medium-scale industries are startup their businesses to the next level using cloud computing. The services have been provided to the users by allocating the requested resources. Allocating resources without waste and with the finest allocation is a critical task in the cloud. This paper proposes a method for allocating resources using the cost of the resource. Resource allocation follows a priority system when allocating resources. The proposed method gives priority to low-cost resources. The cost denotes the service cost of the resource. The requested resource is assigned to the user by the CSP, who provides the specific resource at a low cost. This proposed method suggests a UHRAM for collecting and allocating the resources from the different CSPs. UHRAM is a centralized hub for delivering requested resources to users, and it maintains a repository of details about the resources from all CSPs in the heterogeneous cloud. The proposed method is implemented with the user’s data. The results from the comparison show that the proposed cost-based resource allocation method is more efficient than existing methods.Abstract
How to Cite
Downloads
Similar Articles
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. S. Deepika, Ajay Massand, Influence of Social Media Marketing on Purchase Intention of Gen Z , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Prabu Gopal, M. Jeyaseelan, Familial support of rural elderly in indian family system: A sociological analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, An optimal fuzzy inventory model for rice farming using lagrangean method , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 22 23 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper

