MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.03Keywords:
Cloud Computing; Resource allocation; Cost-based Allocation; Heterogeneous Cloud;Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The cloud is an intelligent technology that provides requested services to users. It offers unlimited services for the users. Many small and medium-scale industries are startup their businesses to the next level using cloud computing. The services have been provided to the users by allocating the requested resources. Allocating resources without waste and with the finest allocation is a critical task in the cloud. This paper proposes a method for allocating resources using the cost of the resource. Resource allocation follows a priority system when allocating resources. The proposed method gives priority to low-cost resources. The cost denotes the service cost of the resource. The requested resource is assigned to the user by the CSP, who provides the specific resource at a low cost. This proposed method suggests a UHRAM for collecting and allocating the resources from the different CSPs. UHRAM is a centralized hub for delivering requested resources to users, and it maintains a repository of details about the resources from all CSPs in the heterogeneous cloud. The proposed method is implemented with the user’s data. The results from the comparison show that the proposed cost-based resource allocation method is more efficient than existing methods.Abstract
How to Cite
Downloads
Similar Articles
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Birhanu T Sisay, Jadu K. Agerchu, Gizachew W. Nuraga, Effects of bended NPSB fertilizer rates and varieties on growth and yield of garlic (Allium sativum L.) in Gummer district, Central Ethiopia , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Leyla A.A Abu-Hussein, The role of food program to overcome obesity, overweight, and underweight among autistic children , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper