A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.10Keywords:
Renewable Energy System, Hybrid System, TLBO algorithm, Standalone RES, PV SystemDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Depletion of fossil fuels, increase in fuel prices, and global warming have motivated the utilization of renewable energy resources like solar and wind, as they are eco-friendly. Due to the stochastic nature of PV and wind, using a single energy source is not reliable and uneconomical as it results in system over-sizing. Integration of renewable sources such as PV and wind can significantly increase energy reliability compared to single-source systems. PV and wind hybrid systems are economically advantageous in isolated areas for providing continuous and quality power due to their inherent complementary characteristics and availability in most areas. Utilizing grid-tied renewable energy resources is also economical and reliable to overcome power outages in remote areas. This study proposes a TLBO algorithm for optimal design and sizing of HRES in both standalone and grid-connected modes due to its simplicity and fewer parameters to adjust. The objective of the optimization problem in standalone, as well as the grid-connected mode, is to minimize the LCE and maximize the system reliability and renewable energy integration while satisfying the system constraints and load demand. The number of PV panels, wind turbines, and batteries is taken as decision variables optimally determined by the proposed optimization algorithm. The simulations are carried out in MATLAB software. The effectiveness of TLBO in designing and sizing the hybrid system is investigated, and its performance is compared with other well-known optimization algorithms PSO; the TLBO provides the best optimal solution, better performance, and faster convergence speed compared to different algorithmsAbstract
How to Cite
Downloads
Similar Articles
- Rama Rao J.V.G, Raja Gopal A.N.V.J, Ponnaganti S. Prasad, Illa V. Ram, Muthuvel B, Power quality improvement in BLDC motor drive using PFC converter , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Neha Verma, Beyond likes & clicks: Empowering role of social media marketing in value creation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- NITHYA R, shruthi D, Sindhuja S, Sneha S, Challenges encountered by health care professionals in monitoring adverse events due to medical devices: A review , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nithya Raju , Shruthi Deivigarajan, Sindhuja Santhakumar, Sneha Balamurugan, Challenges encountered by healthcare professionals in monitoring adverse events due to medical devices-A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. R. R. Prakash, Kishore Kunal, Designing information systems for business administration through human and computer interaction , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nitin Chandel, Lalsingh Khalsa, Sunil Prayagi, Vinod Varghese, Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nitu Y. Wadkar, Sneha A. Irole, Sayali S. Kondar, Kalyani Joshi, The idea of mahavisha-upvisha shodhan in agadtantra: The ancient Indian knowledge system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper