Smart Dustbin using IOT
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.27Keywords:
Smart dustbin, Dijkstra’s algorithm, LCD, wireless fidelity, global positioning system.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Living in a technological world that is upgrading day by day, there is one major problem that should be dealt with. Garbage, which is the issue preventing us from developing into a sanitary, clean, and healthy society. In our daily lives, we frequently encounter trash cans that are overflowing with junk. Neither our environment nor our growth benefit from situations like this. Due to the abundance of flies and mosquitoes that breed on the garbage, this issue has a significant negative impact on health. As a result, this project is designed to prevent the trashcan from becoming overfilled by giving it the ability to alert itself when it needs to be cleaned. The smart trash bin system in this project is built on a microcontroller and has ultrasonic sensors on each of the two trash cans to display the garbage's current status on an LCD screen and a smartphone.Abstract
How to Cite
Downloads
Similar Articles
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shyamkant M. Khonde, Lata Suresh, Globalization and the evolution of labor: Navigating new frontiers in the global economy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kirti Gupta, Parul Goyal, Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amita Pal, Richa Trivedi, Amit Jain, Sudhir Jain, Diurnal and seasonal variation of GPS-TEC during a low solar activity period at EIA region (Bhopal) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Jonah, Danush Kumar SM, Yugeshkrishnan M, Santhoshkumar K, Shahid Gaffa, Satellite hardfacing of mild steel using robotic mig welding , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper