LSTM based data driven fault detection and isolation in small modular reactors
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.25Keywords:
Deep learning, Fault detection and isolation, Long short-term memory, Pressurized water reactor, Recurrent neural network, Small modular reactor.Dimensions Badge
Issue
Section
Nuclear power stations revealed their value in the power sector by supplying reliable, emission-free power for many years. The highest standards of safety must be attained since a nuclear power station is a nonlinear, intricate, time-varying system that has the probability of leaking radiations. Pr edominantly, it is challenging for operators to quickly and precisely extract critical data about the real plant variables as a result of the vast monitoring data obtained in modern NPPs. However, current developments in machine learning techniques have made it conceivable for operators to interpret these vast amounts of data and take appropriate action. Thermal hydraulic analysis using the RELAP5 algorithm was done on the IP-200 NPP. A long short-term memory architecture was trained to categorize six different simulated IP-200 circumstances. The outcomes improved the accuracy and dependability of nuclear power plant fault monitoring systems.Abstract
How to Cite
Downloads
Similar Articles
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Priyanka Patel, Bhaskar Pandya, Indian myths and modernity: Their application in Tagore, Anand, and Narayan’s selected short stories , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Parwez Ahmad, Md Jamaluddin, Estimation of Some Heavy Metal Estimation at Sites of Saryug River as Lateral Tributary of the Ganga in Northern Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper

