Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadyl ion
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.32Keywords:
Electron Paramagnetic Resonance; binding parameters; spin-orbit interaction; spin-Hamiltonian; fermi contact term; hyperfine interaction parameter; parametric angle.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In octahedral complexes doped with transition metal ions the Steven’s model has been used for computing the covalent binding parameters. This model is further used for interpreting the g-factors in various single crystals containing paramagnetic VO2+ ion. Theoretical expressions were given for the g-factors of Vanadyl ions in the crystalline field of cubic nature with components of tetragonal symmetry. The g-factors have been given in terms of covalent binding parameters || and taking into account the tetragonal crystalline field and covalent binding. Computations show that should be less than 0.064 in order to fit the experimental g-values. Using crystal field theory, the ground state wave functions (GSWF) for VO2+ ions in different single crystals has been determined. It is found that GSWF is in dxy state with slight admixture of excited states dx2-y2, dxz and dyz. The hyperfine interaction parameter P and Fermi contact term X have also been calculated.Abstract
How to Cite
Downloads
Similar Articles
- Gunjan Choudhary, Anupriya Roy Srivastava, Examining identity crisis in Samina Ali’s Madras on Rainy Days , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravi Kumar P, C. Gowri Shankar, Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S.K. Sawale, N.V. Phirke, Exploring the Possibilities of Using Bradyrhizobium japonicum as a Nitrogen Fixing Bioresource in Soybean Cultivation in Purna-river Basin , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Rajesh Rayal, Alveena Saher , Pankaj Bahuguna, Shailza Negi, Study on Breeding Capacity of Snow Trout Schizothorax richardsonii (Gray) From River Yamuna, Uttarakhand, India , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Anurag B. Gohain1, Devanand Mishra, Vithou U Mera, Content analysis of academic library website with special reference to the central universities in Northeast India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Harjinderpal Singh Kalsi, To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- K. Karuppiah, Asha Sundaram, Felling of trees – The judicial trends , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shamba Gowda, AR Chethan Kumar, S. Srinivasaragavan, Scholarly communication behavior in forestry research: A bibliometric analysis of global publications , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mohanapriya Jayapal, Hema Jagadeesan, Plant-microbe-dye interaction during rhizoremediation , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Goutam Mandal, Baibaswata Bhattacharjee, Biosynthesis of ZnO nanoparticles using the young fruit of Borassus flabellifer: Characterization and photocatalytic removal of biohazardous safranin-O dye using solar irradiation , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.