Doi: 10.58414/SCIENTIFICTEMPER.2023.14.2.32

RESEARCH ARTICLE

Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadyl ion

Indrajeet Mishra

Abstract

Steven's model has been used for computing the covalent binding parameters in octahedral complexes doped with transition metal ions. This model is further used to interpret the g-factors in various single crystals containing paramagnetic VO²⁺ ions. Theoretical expressions were given for the g-factors of Vanadyl ions in the crystalline field of cubic nature with components of tetragonal symmetry. The g-factors have been given in terms of covalent binding parameters K_{\parallel} and K_{\perp} taking into account the tetragonal crystalline field and covalent binding. Computations show that K_{\perp} should be less than 0.064 in order to fit the experimental g-values. Crystal field theory has determined the ground state wave functions (GSWF) for VO²⁺ ions in different single crystals. It is found that GSWF is in d_{xy} state with a slight admixture of excited states d_{x-y}^{2-2} , d_{xz} and d_{yz} . The hyperfine interaction parameter P and Fermi contact term X have also been calculated.

Keywords: Electron Paramagnetic Resonance; binding parameters; spin-orbit interaction; spin-Hamiltonian; fermi contact term; hyperfine interaction parameter; parametric angle.

INTRODUCTION

Vanadyl complexes have been the subject of interest to different researchers due to fact that the electronic state of VO²⁺ ion having vanadium ion V⁴⁺ and a closed shell oxide O²⁻ is 3d¹. A number of workers Assour *et al* (1965); Assour (1965); Radhakrishna (1983); Selvin (1965); Manoogian and Mackinnon (1967); Rao *et al*. (1968); Manoharan and Rogers (1968); Flowers *et al*. (1973); Jain (1979); Oversluizen and Metselaar R (1982) have done earlier EPR studies of Vanadyl ion doped in different single crystals because tetravalent vanadium exists as a stable Vanadyl. It is found that the configuration of a single unpaired electron of Vanadyl ion is similar to the d¹ configuration of Ti³⁺ or d⁹ configuration of

Department of Physics, Buddha P. G. College, Kushinagar, Uttar Pradesh, India.

***Corresponding Author:** Indrajeet Mishra, Department of Physics, Buddha P. G. College, Kushinagar, Uttar Pradesh, India, E-Mail: indrajeet_mishra47@rediffmail.com

How to cite this article: Mishra, I. (2023). Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadylion. The Scientific Temper, **14**(2):445-452.

Doi: 10.58414/SCIENTIFICTEMPER.2023.14.2.32

Source of support: Nil

Conflict of interest: None.

Cu²⁺. It was shown by Tapramaz *et al.* (2000) that in Vanadyl ion V-O bond has considerable covalent bonding nature which is inversely proportional to the EPR parameters g_{\parallel} and g_{\perp} . Earlier investigations show that VO²⁺ ion always occurs coordinated to other groups, whether in the solid state or in the solution form. This ion's electronic state is mainly dependent on the 3d¹ electron. Hence the energy levels of VO²⁺ ion can be taken as that of the V⁴⁺ ion. Therefore it is interesting to see whether it is possible to explain the experimental data obtained from the EPR spectra of VO²⁺ ion doped in different diamagnetic lattices as well as to find the bonding character of vanadium complexes on the basis of theoretical analysis of the behavior of a single 3d¹ electron.

It was suggested earlier by Gerritsen and Lewis (1960) that expressions of g- factors in the parallel and perpendicular orientations, as given by Bleaney *et al.* (1955) could not explain the experimental g values due the presence of the crystalline field of lower symmetry and the factors not taken into analysis by Bleany *et al.* (1950). The model for covalent bonding given by Stevens (1953) may be a better tool for the explanation of experimental g-values in the presence of tetragonal crystalline field. In the present study I try to find out whether the g-values determined from the EPR experiment and also the bonding character for VO²⁺ ion doped different single crystals can be explained by Steven's (1953) model of covalent bonding. It is clear from the theoretical observations that in order to have better fit the experimental g-factors, one of the covalent binding

factors should be taken as less than one. If EPR parameters g and A are known by experiment, then spectroscopic and magnetic character can be obtained from ground state wave functions. The hyperfine splitting parameter P and Fermi contact term X can be evaluated using g and A values. In the present work, using crystal field theory, the covalent binding factors and ground state wave functions along with P and X of VO²⁺ ion in different single crystal lattices.

Theory and Calculation

If Vanadylion VO²⁺ doped in a single crystal is subjected in the octahedral symmetry of crystalline field having tetragonal distortion because of surrounding ligands. In such a field the equivalent Hamiltonian operator is given as follow (Abragam and Bleaney 1970):

$$\mathcal{H} = B(O_4^0 + 5O_4^4) + B_2^0 O_2^0 + B_4^0 O_4^0$$
 (1)

In the above equation (1) term B₄ represents the magnitude of the octahedral field and the remaining two terms give the tetragonal distortions for the second and fourth degree in the potential, respectively. The expressions of g_{||} and g_⊥ for $(d\epsilon)^5$ in an octahedral field with tetragonal distortion were given by Stevens (1953). The states in the ground state doublet for d electron can be expressed as:

$$|\Psi_{+}\rangle = Cos\beta|b,-\rangle - Sin\beta|c,+\rangle$$
(2)
$$|\Psi_{-}\rangle = Cos\beta|a,+\rangle + Sin\beta|c,-\rangle$$
(3)

where β is defined as:

$$\tan 2\beta = \frac{\sqrt{2\lambda}}{\left(\lambda / 2\right) - \Delta}$$

Here λ is the spin-orbit coupling constant and the energy gap between the states Γ_5 and Γ_3 is Δ . In the present investigation for d electrons $|a\rangle$, $|b\rangle$ and $|c\rangle$ become $|1\rangle$, $|-1\rangle$ and $(\chi_{c_2})_{|2\rangle-|-2\rangle}$. The expressions for g-factors are given as

$$\mathsf{g}_{||} = 2 \left| Sin^2 \beta - (1+\kappa) Cos^2 \beta \right|, (4)$$

$$g_{\perp} = 2 \left| \sqrt{2} \kappa Sin\beta Cos\beta + Sin^2\beta \right|$$
 (5)

Where κ is defined as $\kappa = \langle a | L_z | a \rangle$ and it is assumed that covalent binding is isotropic, that is, same in all directions. If covalent binding is assumed to be anisotropic in nature, the g-factors are determined as follows:

$$g_{\parallel} = 2 \left| Sin^{2} \beta - (1 + \kappa_{\parallel}) Cos^{2} \beta \right|$$
(6)
$$g_{\perp} = 2 \left| \sqrt{2} \kappa_{\perp} Sin \beta Cos \beta + Sin^{2} \beta \right|$$
(7)

Where K_{\parallel} and K_{\perp} are the covalent binding parameters are defined by the following relations:

$$\mathcal{K}_{\parallel} = \langle 1 | L_z | 1 \rangle$$
 and $\mathcal{K}_{\perp} = \sqrt{2} \langle 1 | L_x | 0 \rangle$ with $\mathcal{K} = \langle a | L_z | a \rangle$.

The above equations (4) and (5) can be used for the estimation of the binding parameters along with experimental values g-factors taken from the different research papers mentioned in Table 1.

The ²D term splits into three singlets and one doublet in an octahedral field with tetragonal distortion. The splitting of ²D term is shown in Figure 1. It is found that the form of spin-orbit coupling matrix has form $\langle \Psi_{i} | \lambda L.S | \Psi_{j} \rangle$ (Poole and Farach 1972). The wave function of the ground state can be easily written by using the first-order perturbation theory and following Zapirov and Chirkin (1968). In the present case wave function is as follows:

$$\left|\pm\right\rangle = \pm C_1 \left|\pm 2,\pm \frac{1}{2}\right\rangle \mp C_2 \left|\mp 2,\pm \frac{1}{2}\right\rangle \pm C_3 \left|\mp 1,\mp \frac{1}{2}\right\rangle$$
(8)

The coefficient C_1 , C_2 and C_3 gives the admixture of d_{xy} state with slight admixture of excited states d_{x^2,y^2} , d_{xy} states to the ground state d_{xy} due to the spin-orbit coupling. If we know these coefficients C_1 , C_2 and C_3 the ground state can be easily calculated. These constants are determined by solving the following equations-

$$C_{1}^{2} + C_{2}^{2} + C_{3}^{2} = 1$$
(9)
$$g_{||} = 2(3C_{1}^{2} - C_{2}^{2} - 2C_{3}^{2})$$
(10)

and

$$g_{\perp} = 4C_1(C_2 - C_3)$$
 (11)


The coefficients C_1 , C_2 and C_3 are easily determined by substituting the experimental values of g_{\parallel} and g_{\perp} in the equations (10) and (11) along with the equation (9). Now in equation (8) the values of constants C_1 , C_2 and C_3 are substituted to obtain the ground state wave function. The hyperfine structure constants are now calculated using the estimated ground state wave function (Abragam and Bleaney 1970).

$$A_{\parallel} = P \left[g_{\parallel} - \left(X + \frac{15}{7} \right) \left(1 - 2C_3^2 - \frac{3}{7} \left(1 + 4C_2 C_3 \right) \right) \right]$$
(12)
$$A_{\perp} = P \left[\frac{11}{14} g_{\perp} - 2C_1 C_2 \left(X + \frac{9}{7} \right) \right]$$
(13)

The values of calculated coefficients C₁, C₂ and C₃ along with the experimental values $g_{\parallel'} g_{\perp}$, A_{\parallel} and A_{\perp} for different diamagnetic lattices taken from different references (Table 1) are substituted in equations (12) and (13) to get hyperfine interaction parameter P and Fermi contact term X. The calculated ground sate wave functions along with the values of P, X, binding factors and parametric angle β are given in Table 1. The values of P and X are determined in both cases i.e. positive and negative values of A_{\perp} and A_{\perp}. In case A_{\perp} / A_{\perp} <0, the obtained values of P and X do not match with the results using molecular orbital theory therefore, these values for P and X are taken for the small unpairing or polarization due to inner electron as a result of an interaction with an unpaired d electron.

Results and Discussion

If VO²⁺ ion is doped in different single crystals, then observed EPR spectra are usually described by a very strong octahedral ligand field with tetragonal distortion due to covalent bonding between central metal ion and the surrounding ligands. The calculated values of A₁ and A_1 and ground state wave functions, X and P are given in Table 1. In the presence of a tetragonal field, there is no shifting of the doublet in t_{2a} and higher doublet e; therefore, covalent binding factors are found to be less than 1. Since λ is not exactly known, multiple values of K_{\parallel} , K_{\parallel} and parametric angle β have been determined. Angle β can not be fixed here as exact value for λ is not known. If λ is exactly known the parametric angle β can be fixed and the parameters corresponding to fixed β will give the proper result for the system. The present study computation shows that by taking value of K_{\perp} <0.064 the best fit to the experimental q values can be obtained. If the value of covalent binding factor is small then an electron will migrate to its neighboring atoms.

Figure 1: Energy level splitting of 2_D state of vanadium V⁴⁺ with octahedral field in Configuration d¹ by tetragonal distortion

The parameters g_{\parallel} and g_{\perp} depends upon nature of covalent binding and the factors κ_{\parallel} and κ_{\perp} . This dependency confirms the inverse relation between κ_{\parallel} and g_{\parallel} . If the value of κ_{\parallel} decreases then g_{\parallel} increases and covalency decreases, indicating that the complex will have more ionic character. At the same time there is direct proportionality between and showing different nature of the binding for a particular system. The present work shows that rate of decrease of κ_{\parallel} is more than κ_{\perp} so that compound can be considered to be more ionic in nature. Therefore there will be more migration of electrons to neighboring atoms indicating that there must be the possibility of transfer of net amount of charge, which is also observed in the crystal field theory for ionic compounds.

The ground state wave functions of different complexes doped with VO²⁺ estimated in present study is of the d_ type with some admixture of excited states d_{x-y}^{2-2} , d_{xz} and d_{yz} . The same result was also obtained by Kivelson and Lee (1964) using theory of Ballhausen and Gray (1962). ESR spectra of complexes used in my study also confirm that ground state is d.,. Spectra also support my calculations. Parameter X shows the contribution of unpaired s-electron to the hyperfine structure splitting. According to Abragam (1950) hyperfine splitting is originated from interaction because of configuration. Major contribution to the hyperfine structure splitting by virtue of core polarization parameter (Fermi contact term) is due to unpaired s-electron therefore, slight admixture in ground state wave function is necessary for the explanation of splitting. A regular variation in P with covalency was observed by Wieringen (1955). There is direct relation between ionic character of crystal and splitting. The single crystal with more ionic character shows larger splitting. If A₁ / A_1 >0 the estimated values of P and X are more suitable because the condition P/P_o is satisfied only for the positive ratio of $\mathsf{A}_{\!\scriptscriptstyle \parallel}$ and $A_{\!\scriptscriptstyle \perp}$. Here $\mathsf{P}_{\!\scriptscriptstyle 0}$ having a value of 200×10⁻⁴ cm⁻¹ is free ion hyperfine interaction. A relation between P and P_o is given by the relation:

$$\frac{P}{P_0} lpha rac{\lambda}{\lambda_0}$$

In above relation λ is spin-orbit coupling constant for paramagnetic ion in a crystal, λ_0 is the free ion value. It is found that $\lambda < \lambda_0$.

Acknowledgements

The author is thankful to Dr. A. Fischer, Department of Inorganic Chemistry, Royal Institute of Technology, and Stockholm, Sweden for providing fractional coordinates data of different atoms of sodium citrate structure. The author is also thankful to University Grants Commission (U. G. C.), New Delhi for financial assistance. Indrajeet Mishra

S. No.	Crystal Lattices	Ground state wave function	P× (10 ⁻⁴ cm ⁻¹)	Х	Κı	K⊥	β
1.	Potassium Alum {KA1.(SO4)2.12H2O} (Rao et al. 1968)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0061 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0086 \left \mp 1, \mp \frac{1}{2} \right\rangle $	126.1952	0.9533	1.377 1.112 0.889 0.643	0.022 0.037 0.042 0.049	96°45′ 97° 97°15′ 97°30′
2.	Cs Alum {Cs Al(SO ₄) ₂ .12H ₂ O} (Manoogian and MacKinnon 1967)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\pm 2, \pm \frac{1}{2} \right) - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0063 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0094 \left \mp 1, \mp \frac{1}{2} \right\rangle $	115.1922	0.9372	1.089 0.889 0.632 0.432 0.336	0.009 0.015 0.026 0.035 0.030	96°15' 96°30' 96°45' 97° 97°15'
3.	Tri Sodium Citrate Pentahydrate {Na ₃ C ₆ H ₅ O ₇ .5H ₂ O} (Bhaskar et al. 1982)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0069 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0089 \left \mp 1, \mp \frac{1}{2} \right\rangle $	117.668	0.9077	1.082 0.858 0.658 0.457 0.320	0.016 0.019 0.026 0.029 0.036	96° 96°15' 96°30' 96°45' 97°
4.	L-asparagine monohydrate (Kripal et al. 2009)	$\pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right)$ $\mp 0.0068 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right)$ $\pm 0.0077 \left \mp 1, \mp \frac{1}{2} \right\rangle$	114.978	0.8459	1.202 0.950 0.758 0.657 0.420 0.233	0.034 0.039 0.046 0.049 0.056 0.067	95°15' 95°30' 95°45' 96° 96°15' 96°30'
5.	Tri Sodium Citrate Dihydrate (Karabulut et al.2005)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\pm 2, \pm \frac{1}{2}\right) - \mp 2, \pm \frac{1}{2}\right) $ $ \mp 0.0071 \left(\left \pm 2, \pm \frac{1}{2}\right\rangle + \left \mp 2, \pm \frac{1}{2}\right\rangle\right) $ $ \pm 0.0079 \left \mp 1, \mp \frac{1}{2}\right\rangle $	120.8095	0.8566	1.072 0.850 0.658 0.457 0.225	0.0094 0.016 0.027 0.031 0.036	96°15' 96°30' 96°45' 97° 97°15'
б.	K Zn Cl (SO4).3H2O (PZCST) (Raju et al.2003)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0057 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0049 \left \mp 1, \mp \frac{1}{2} \right\rangle $	114.659	0.7928	0.0196 0.0223 0.0289 0.0320	0.0048 0.0088 0.016 0.020	96°30' 96°45' 97° 97°15'
7.	Cs2Co (SO4)2.6H2O (Tutton Salt) (Narasimhulu and Rao 1997)	$\pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right)$ $\mp 0.0058 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right)$	116.8774	0.7519	1.113 0.888 0.654	0.0098 0.017 0.021	95°15′ 95°30′ 95°45′
		$\pm 0.0047 \mp 1, \mp \frac{1}{2}$			0.463 0.355	0.027 0.039	96° 96°15′

Table 1: Ground state wave function, hyperfine interaction parameter P, Fermi contact term X, Covalent binding factors $K_{\parallel'} K_{\perp}$ and parametricangle β for Vanadyl ion in different crystals

8.	MgRb2(SO4)2.6H2O (Tutton Salt) (Jain and Venkateshwarlu 1979)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\pm 2, \pm \frac{1}{2} \right) - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0055 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0036 \left \mp 1, \mp \frac{1}{2} \right\rangle $	119.9095	0.8308	1.2033 0.944 0.833 0.565	0.018 0.033 0.034 0.039	95°30' 95°45' 96° 96°15'
9.	(NH4)2.C2 O4.H2O (Jain and Venkateshwarlu 1979)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0055 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0090 \left \mp 1, \mp \frac{1}{2} \right\rangle $	120.8085	0.8886	1.068 0.846 0.647 0.435 0.236	0.0078 0.014 0.022 0.036 0.039	96°30' 96°45' 97° 97°15' 97°30'
10.	GeO2 (Siegel 1964)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right $ $ \mp 0.0058 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0046 \left \mp 1, \mp \frac{1}{2} \right\rangle $	113.8894	0.9406	1.122 0.888 0.732 0.644 0.533	0.016 0.024 0.044 0.048 0.054	96°30' 96°45' 97° 97°15' 97°30'
11.	(NH4)2Mg (SO4)2.6H2O (Narayana et al. 1976)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0061 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0086 \left \mp 1, \mp \frac{1}{2} \right\rangle $	115.2888	0.8306	1.078 0.858 0.669 0.499 0.326	0.006 0.016 0.022 0.026 0.032	95°45' 96° 96°15' 96°30' 96°45'
12.	K2Mg (SO4)2.6H2O (Kasturirengan et al. 1975)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\pm 2, \pm \frac{1}{2} \right) - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0066 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0036 \left \mp 1, \mp \frac{1}{2} \right\rangle $	128.526	0.8819	1.212 0.956 0.754 0.522 0.348	0.0028 0.0086 0.016 0.020 0.026	96°45' 97° 97°15' 97°30' 98°
13.	ZnSO4.7H2O (Kasiviswanath 1977)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0047 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0044 \left \mp 1, \mp \frac{1}{2} \right\rangle $	125.2928	0.9376	1.086 0.869 0.668 0.498 0.316	0.009 0.017 0.021 0.024 0.032	95°45' 96° 96°15' 96°45' 97°
14.	KMgCl(SO4).3H2O (Kainite) (Dhanuskodi et al. 2001)	$\pm \left(\frac{1}{\sqrt{2}}\right) \left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right)$ $\mp 0.0068 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right)$ $\pm 0.0079 \left \mp 1, \mp \frac{1}{2} \right\rangle$	118.2628	0.9636	1.388 1.112 0.868 0.656 0.461 0.288	0.022 0.026 0.033 0.038 0.044 0.049	95°30' 95°45' 96° 96°15' 96°30' 96°45'
15.	Cd (NH4)2 (SO4)2.6H2O (CdASH) (Satyanarayana and Radhakrishna 1985)	$ \begin{array}{c} \pm \left(\frac{1}{\sqrt{2}} \right) \left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) \\ \mp 0.0061 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) \\ \pm 0.0087 \left \mp 1, \mp \frac{1}{2} \right\rangle \end{array} $	127.449	0.8466	1.068 0.836 0.624 0.434 0.266	0.008 0.015 0.022 0.032 0.038	97° 97°15' 97°30' 97°45' 98°

<u> </u>				0.0010			<u> </u>
16.	Zn (NH4)2 (SO4)2.6H2O (Mishra . and Jian- Sheng Sun. 1990).	$\pm \left(\frac{1}{\sqrt{2}}\right) \left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right)$ $\mp 0.0059 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right)$ $\pm 0.0086 \left \mp 1, \mp \frac{1}{2} \right\rangle$	117.8706	0.8812	1.0189 0.846 0.666 0.424 0.265	0.0052 0.012 0.018 0.024 0.028	96°45' 97° 97°15' 97°30' 97°45'
17.	Mg KPO4.6H2O (MPPH) (Deepa et al. 2005)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0059 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0087 \left \mp 1, \mp \frac{1}{2} \right\rangle $	118.886	0.8898	1.238 0.978 0.746 0.536 0.354	0.024 0.028 0.033 0.037 0.044	95°45' 96° 96°15' 96°30' 96°45'
18.	MPSH (Anandalakshmi et al 2000)	$ \begin{array}{c} \pm \left(\frac{1}{\sqrt{2}}\right) \left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) \\ \mp 0.0052 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) \\ \pm 0.0096 \left \mp 1, \mp \frac{1}{2} \right\rangle \end{array} $	112.868	0.8102	0.846 0.549 0.302 0.092	0.0012 0.0075 0.014 0.019	96° 96°15' 96°30' 96°45'
19.	ZPPH (Ravikumar et al. 2001)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0060 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0077 \left \mp 1, \mp \frac{1}{2} \right\rangle $	114.8668	0.7766	0.763 0.489 0.347 0.222 0.030	0.005 0.013 0.016 0.021 0.033	94°45' 95° 95°15' 95°30' 95°45'
20.	CPPH (Sougandi et al.2002)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0058 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0065 \left \mp 1, \mp \frac{1}{2} \right\rangle $	115.8081	0.7582	1.096 0.768 0.478 0.390 0.027	0.018 0.025 0.031 0.033 0.036	94°15' 94°30' 94°45' 95° 95°15'
21.	CSPH (Sougandi et al.2003)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\pm 2, \pm \frac{1}{2} \right) - \mp 2, \pm \frac{1}{2} \right) $ $ \mp 0.0066 \left(\pm 2, \pm \frac{1}{2} \right) + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0081 \left \mp 1, \mp \frac{1}{2} \right\rangle $	119.3722	0.7446	0.666 0.488 0.387 0.0325 0.0266 0.0066	0.022 0.029 0.034 0.039 0.041 0.045	97° 97°15' 97°30' 97°45' 98° 98°15'
22.	(CoMTH) H2Co(C4H2O4)2.4H2O (Gopal et al.2001)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0053 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0048 \left \mp 1, \mp \frac{1}{2} \right\rangle $	114.8886	0.8844	1.188 0.899 0.558 0.336 0.099	0.006 0.018 0.022 0.027 0.033	94°30' 94°45' 95° 95°15' 95°30'
23.	(NH4)₂C4H4O6 (Tapramaz et al.2000)	$ \pm \left(\frac{1}{\sqrt{2}}\right) \left(\left \pm 2, \pm \frac{1}{2} \right\rangle - \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \mp 0.0072 \left(\left \pm 2, \pm \frac{1}{2} \right\rangle + \left \mp 2, \pm \frac{1}{2} \right\rangle \right) $ $ \pm 0.0056 \left \mp 1, \mp \frac{1}{2} \right\rangle $	113.8885	0.9288	1.123 0.879 0.664 0.465 0.299	0.0028 0.0086 0.014 0.022 0.026	96°30' 96°45' 97° 97°15' 97°30'

References

- Abragam A. (1950). Paramagnetic Resonance and Hyperfine Structure in the Iron Transition Group. *Phys. Rev.*79, 534. https://doi.org/10.1103/PhysRev.79.534
- Abragam A. and Bleaney B. (1970) *Electron Paramagnetic Resonance* of *Transition ion*. Clarendon, Oxford.
- Anandalakshmi H., Rajendiran T. M., Venkatesan R. and Sambasiva Rao P. Single crystal EPR study of VO(II)-doped magnesium potassium Tutton's salt –Part 4 *Spectrochim. Acta A* 56(2000) 2617-2625. https://doi.org/10.1016/S1386-1425(00)00269-9
- Assour J. M. (1965). Electron Spin Resonance of Tetraphenylporphine. J. Chem. Phys. 43, 2477-2489. https://doi.org/10.1063/1.1697147
- Assour J. M., Goldmatcher J. M. and Harrison S. E. (1965). ESR of Vanadyl Phthalocyanine J. Chem. Phys. 43,159-165. https://doi. org/10.1063/1.1696446
- Ballhausen C J and Gray H B (1962). The electronic structure of the Vanadyl ion. J. Inorg. Chem.1, 111-122.https://doi.org/10.1021/ ic50001a022
- Bhaskar Rao T. and Venkateshwarlu M. (1982) ESR study of Vanadyl ion in Tri-Sodium Citrate Pentahydrate. *Solid State Commun.* 44, 1617-1619. https://doi.org/10.1016/0038-1098(82)90692-5
- Deepa S., Kelvan K., Sougandi I., Venkatesan R. and Sambasiva Rao P. (2005). Single crystal EPR study of VO(II) in magnesium potassium phosphate hexahydrate:a case of two sustitutional vanadyl ions. *Spectrochim. Acta A* 61, 2482-2487. https://doi. org/10.1016/j.saa.2004.09.013
- Dhanuskodi S. and Jeyakumari A.P. (2001). EPR studies of VO²⁺ ions in kainite single crystals. *Spectrochim. Acta A* 57,971-975. https://doi.org/10.1016/S1386-1425(00)00456-X
- Flowers J. M., Hempel J. C., Hatfield W.E. and Dearman H. H.(1973). An EPR study of VO²⁺ and Cr³⁺ in (NH₄₎₂SbCl₅. *J. Chem. Phys. 58,* 1479-https://doi.org/10.1063/1.1679383
- Gerritsen H. T. and Lewis H. R. (1960). Paramagnetic Resonance of V⁴⁺in TiO₂. *Phys. Rev. 119, 1010-1011*.https://doi.org/10.1103/ PhysRev.119.1010
- Gopal N. O., Narsimhulu K. V. and Rao J. L. (2001) EPR and optical absorption studies on VO²⁺ ions doped in cobalt maleate tetrahydrate single crystals. *Physica B* 307,117-124. https://doi.org/10.1016/S0921-4526(01)01017-1
- H. Kalkan, F. Koksal. (1998). Electron paramagnetic resonance of VO²⁺ in Cd(HCOO)₂2H₂O and Pb(HCOO)₂ single crystals. *Solid State Commun*. 105, 307-310. https://doi.org/10.1016/S0038-1098(97)10122-3
- Jain V. K. (1979). Electron Spin Resonance of VO²⁺ in (NH₄)2.SeO₄ J. Phys. Soc. Jpn. 46, 1250-1253. https://doi.org/10.1143/ JPSJ.46.1250.
- Jain V. K. and Venkateshwarlu P. (1979). Electron paramagnetic resonance of VO²⁺ in hydrated crystals. *J. Chem. Phys.* 73(1) 30-35. https://doi.org/10.1063/1.439876
- Karabulut B., Ilkin I. and Tapramaz R. (2005). EPR and Optical Absorption Studies of VO²⁺ Doped Trisodium Citrate Dihydrate Single Crystals. *Z. Naturforsch*. 60 A, 95-100. https:// doi.org/10.1515/zna-2005-1-216
- Kasiviswanath A. (1977). EPR studies of VO²⁺ single crystals of ZnSO₄.7H₂O and certain poly crystalline sulphates. *J. Chem. Phys.* 67, 3744-3757. https://doi.org/10.1063/1.435315
- Kasturirengan S. and Soundarrajan S. (1975). Electron paramagnetic resonance study of K₂Zn (SO₄)₂.6H₂O and K₂Mg (SO₄)₂.6H₂O. *J. Magn. Resn.* 19 357-364. https://doi.org/10.1016/0022-2364(75)90050-5

- Kivelsnon D and Lee S. K. (1964). ESR Studies and the Electronic Structure of Vanadyl Ion Complexes J. Chem. Phys. 41, 1896-1903.https://doi.org/10.1063/1.1726180
- Kripal R., Mishra I., Gupta S. K. & Arora M. (2009). EPR and Optical Absorption Studies on VO²⁺ ions in L-asparagine monophydrate single crystals. *Spectrochim. Acta A* 71, 1969-1972. https://doi.org/10.1016/j.saa.2008.07.037
- Manoharan P. T. and Rogers M. T. (1968). ESR Study of VOF₅³⁻ Ion. J. Chem. Phys. 49, 3912-3918. https://doi.org/10.1063/1.1670700
- Manoogian A. and MacKinnon J. A. (1967). The Electron Spin Resonance of VO²⁺ in two types of Aluminium Alums. *Can. J. Phys.* 45, 2769-2777. https://doi.org/10.1139/p67-223
- Mishra S.K. and Jian-Sheng Sun. (1990). EPR of a VO²⁺ -doped Zn(NH₄)₂ (SO₄)₂.6H₂O single crystals: Ligand superhyperfine interaction. *Phys. Rev B* 42(13) 8601-8604. https://doi. org/10.1103/PhysRevB.42.8601
- Narayana M., Sathyanarayan S. G. and Sastry G. S. (1976). Covalency effects on the E. S. R. Spectra of VO²⁺ in hexaaquo magnesium dihydrogen ethylenediaminetetraacetic acid *Mol. Phys.* 31, 203-207. https://doi.org/10.1080/00268977600100151
- Narasimhulu K. V., Rao J. L. (1997). A single crystal EPR study of VO²⁺ ions in Cs₂Co(SO₄)₂.6H₂O Tutton salt. *Spectrochim. Acta A* 53, 2605-2613. https://doi.org/10.1016/S1386-1425(97)00196-0
- Oversluizen G. and Metselaar R. (1982). ESR and optical absorption spectra of reduced vanadium ions in Ca₂NaMg₂V₃O₁₂ garnet. *J. Phys. C: Solid State Phys.* 15, 4869-4880. https://doi. org/10.1088/0022-3719/15/23/022
- Poole C. P. Jr. and Farach H. A. (1972). *The Theory of Magnetic Resonance*. New York:Wiley Interscience. P357.
- Radhakrishna S. and Salagram M. (1983). Orientational (EPR) study of vanadyl ion in potassium hydrogen oxalate lattice. *Solid State Commun.* 47, 77-82. https://doi.org/10.1016/0038-1098(83)90099-6
- Raju B. D. P., Narsimhulu K.V., Gopal N. O. and Rao J. L. (2003). EPR and optical absorption studies on VO²⁺ ions in KZnCISO₄·3H₂O single crystals - An observation of superhyperfine structure. *J. Phys. Chem. Solids* 64, 1339-1347. https://doi.org/10.1016/ S0022-3697(03)00158-6
- Rao K. V. S., Sastry M. D. and Venkateswarlu P. (1968). Electron Paramagnetic Resonance Studies of VO²⁺ doped Single Crystals. J. Chem. Phys. 49, 4984-4988. https://doi. org/10.1063/1.1669988
- Ravikumar R.V.S.N., Madhu N., Chandrasekar A.V., Reddy B.J., Reddy Y.P., Rao P.S., Rajendiran T.M.and Venkatesan R. Single crystal EPR and optical studies of paramagnetic ions doped zinc potassium phosphate hexahydrate-Part II-VO(II) a case of substitutional site *Spectrochim. Acta A* 57 (2001)2789-2794. https://doi.org/10.1016/S1386-1425(01)00471-1
- Satyanarayana N. and Radhakrishna S. (1985). EPR and electronic absorption studies of Vanadyl ions in the Cd(NH₄)₂ (SO₄)₂.6H₂O single crystals. *J. Chem. Phys.* 83, 529-534. https://doi. org/10.1063/1.449858
- Selvin J (1965). The Chemistry of Oxovanadium (IV) *Chem. Rev.* 65, 153-175. https://doi.org/10.1021/cr60234a001
- Siegel I. (1964). Paramagnetic Resonance of Vanadium Amorphous and Polycrystalline GeO₂. *Phys. Rev.* 134, A193. https://doi. org/10.1103/PhysRev.134.A193
- Sougandi I., Venkatesan R., Rajendiran T.M. and Rao P. S. (2002). Single crystal EPR study of VO (II)-doped cadmium potassium phosphate hexahydrate: A substitutional incorporation *Proc*

Indian Acad.Sci (Chem. Sci). 114, 473-479. https://www.ias. ac.in/article/fulltext/jcsc/114/05/0473-0479

- Sougandi I., Venkatesan R., and Rao. P. S. (2003). EPR of vanadyl ion in cadmium sodium phosphate hexahydrate single crystals: two locations for VO(II). *J. Phys. Chem. Solids* 64, 1231-1236. https://doi.org/10.1016/S0022-3697(03)00079-9
- Stevens K. W. H. and Pryce M. H. L. (1953). On the magnetic properties of covalent XY₆ Complexes. *Proc. R. Soc. Lond.* A219, 542-555. *https://doi.org/10.1098/rspa.1953.0166*
- Tapramaz R., Karabulut B., Koksal. F. (2000). EPR spectra of VO²⁺ and Cu²⁺ ions in di- ammonium D-tartrate single crystals. *J. Phys. Chem. Solids* 61, 1367-1372. https://doi.org/10.1016/ S0022-3697(00)00024-X
- Wieringen Van. (1955). Paramagnetic resonance of divalent manganese incorporated in various lattices. *Disc. Fraday Soc.* 19, 118-126.https://doi.org/10.1039/DF9551900118
- Zaripov M. M. and Chirkin G.K. (1968). *Paramagnetic Resonance*. (Kazan:IzV. Kzansk . Gos. Univ.)