Occurrence of Antibiotic Resistance in Lotic Ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.61Keywords:
Antibiotic resistance, Antibiotic resistance genes (ARGs), Antibiotic resistance bacteria (ARBs), Lotic ecosystems.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Antibiotic resistance is a matter of global public health concern. Antibiotic resistance is disseminated by antibiotic resistance genes (ARGs) which are carried by antibiotic resistance bacteria (ARBs). Lotic ecosystems like rivers which has flowing water can spread ARGs frommone location to another. Such dispersion of ARGs can also move through food chains and food webs making the spread of antibiotic resistance more complex and widespread. Detection of these ARGs is important for understanding the origin and pathways of antibiotic resistance in our waterways. Both culturing and non-culturing methods can be used for detection of these ARGs. Overall, understanding the sources, assessing the presence, and determining the dissemination of antibiotic resistance is important for us to understand the level of antibioticpollution in our waterbodies.Abstract
How to Cite
Downloads
Similar Articles
- K Sreenivasulu, Sameer Yadav, G Pushpalatha, R Sethumadhavan, Anup Ingle, Romala Vijaya, Investigating environmental sustainability applications using advanced monitoring systems , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- REKHA KHANDAL, SHILPENDRA KOUR, RASHMI TRIPATHI, ANTIBACTERIAL ACTIVITY OF PHYTO-CHEMICALS OBTAINED FROM LEAFEXTRACTS OF SOME MEDICINAL PLANTS ON PATHOGENS OF SEMI-ARID SOIL , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Neeru Garg, B.R. Jaipal, Harshvardhan Singh, Impacts of anthropogenic activities on the behavior of Indian fox (Vulpes bengalensis) in the Thar desert , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Jonah, Danush Kumar SM, Yugeshkrishnan M, Santhoshkumar K, Shahid Gaffa, Satellite hardfacing of mild steel using robotic mig welding , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Archana Pathak, Neha Sharma, Synthesis and Antimicrobial Studies of Isoxazole Derivatives , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Manisha Pallvi, Carlson’s Trophic State Index of Shatiya Wetland in Gopalganj District of Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Alok Malviya, Multiple Utilities of Mushrooms , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Abhishek K Pandey, Amrita Sahu, Ajay K Harit, Manoj Singh, Nutritional composition of the wild variety of edible vegetables consumed by the tribal community of Raipur, Chhattisgarh, India , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper

