Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.246Keywords:
Machine Learning, Reconfiguration, Computer numerical control (CNC), Gated Graph Neural Network (GGNN), Automat Manufacturing Systems, Dedicated Manufacturing lines.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To deal with the unpredictability of dynamic markets, automated manufacturing systems rely on their capacity to adapt and change. With the need for more personalized and high-quality goods, the complexity of these systems evolves, prompting more agile and adaptable techniques. To enable dynamic as well as on systems reconfiguration aimed at responding swiftly to product changes by providing more efficient services. To increase production in response to market demand and meet the referred requirements, this proposed study employs Machine Learning Techniques for the Reconfiguration of Automated Manufacturing Systems. Gated Graph Neural Network (GGNN) based prediction model is generated using graph instances as input, and the prediction model provides a result for each graph instance, as well as activity level relevance and ratings for the relevant needs such as model accuracy and validation. For better use of the model effectiveness by the proposed methodology for the final model is validated for cost, time, and productivity.Abstract
How to Cite
Downloads
Similar Articles
- Dattatraya Pandurang Rane, Amey Adinath Choudhari, Rita Kakade, Technology-driven financial inclusion: Opportunities for corporate expansion in emerging markets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- NEETU SINGH RUHELA, PRINCE KUMAR SRIVASTAVA, SADGURU PRAKASH, K. K. ANSARI, HISTOPATHOLOGICAL CHANGES IN THE KIDENY OF FRESHWATER TELEOSTS, CIRRHINUS MRIGALA EXPOSED TO SODIUM FLUORIDE , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Rajeshwar Mukherjee, Uday S. Dixit, Understanding cosmopsychism based on stochastic electrodynamics from the perspective of the Indian knowledge system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Akram M. Elias, Rayan S. Hamed, Jiyar M. Naji, The impact of bone substitute combined with blood cell progenerators on the healing of surgical bony defects , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Isreal Zewide, A coffee biochar-mineral NP interaction: Boon for soil health , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Anjum Parvez, Seema Yadav, Sandhya Verma, Electronic Record as Evidence in the Courts: An Analysis , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- JAY SHANKAR SINGH, D.P. SINGH, R.K GUPTA, GENETICALLY MODIFIED PLANTS : BENEFITS AND ENVIRONMENTAL PROBLEMS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Subhasre S, Nirmala Varghese, A study on consumer attitude and preferences towards graphic design on clothing , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper