SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.25Keywords:
Liveness Detection, Convolutional Neural Network, Face recognition.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Face spoofing refers to “tricking” a facial recognition system to gain unauthorized access to a particular system. It is mostly used to steal data and money or spread malware. The malicious impersonation of oneself is a critical component of face spoofing to gain access to a system. It is observed in many identity theft cases, particularly in the financial sector. In 2015, Wen et al. presented experimental results for cutting-edge commercial off-the-shelf face recognition systems. These demonstrated the probability of fake face images being accepted as genuine. The probability could be as high as 70%. Despite this, the vulnerabilities of face recognitionAbstract
systems to attacks were frequently overlooked. The Presentation Attack Detection (PAD) method that determines whether the source of a biometric sample is a live person or a fake representation is known as Liveness Detection. Algorithms are used to accomplish this by analyzing biometric sensor data for the determination of the authenticity of a source.
How to Cite
Downloads
Similar Articles
- Elangovan G. Reddy, Anjana Devi V, Subedha V, Tirapathi Reddy B, Viswanathan R, A smart irrigation monitoring service using wireless sensor networks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nida Syeda, Kishore Selva Babu, Exploring the role of digital humanities in the centralization of knowledge production: Clusters, networks, or echo chambers , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper