Polylactic Acid: A Bio-Based Polymer as an Emerging Substitute for Plastics
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.10Keywords:
Biodegradable materials, Bio-based polymers, Renewable resources, Bio-plastic, Natural polymers, Synthetic polymers.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Bio-based polymers attract renewable focus due to natural stocks and the success of limited petroleum resources. Bio-based polymers not only replace polymers with a number of details but also provide new compounds for collections for new details. A list of bio-based polymers presented in this review, focusing on global packaging methods, and marketable performance. Unique processes have been performed to increase the activity and production of similar polymers such as bumps, cellulose, and lactic acid. The quest to produce essential products that can decompose in ever-changing waters such as detergents and cosmetics has continued to add value. Biodegradable polymers are mainly classified as agro polymers and decaying polyester Singh et.al., 2018). Bio-polyester products are obtained mainly through renewable energy. Therefore, consumers are more aggressive with low or non-affiliate ratings of biodegradability paper, leading to head-scratching on the basis of cost-effectiveness and product-friendly products. Additionally, there is no equivalent structure for the removal of biodegradable accoutrements in the end.Abstract
How to Cite
Downloads
Similar Articles
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashika R. Singh, Nimish Gupta, G. R. Yadav, Scope of electric vehicles and the automobile industry in Indian perspective , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Leyla A.A Abu-Hussein, The role of food program to overcome obesity, overweight, and underweight among autistic children , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Harsha, Alwin S. Kumar, Srihari Jwalapuram, Sravan Kumar, Marketing strategies in the pharmaceutical industry , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- B. Nivedetha, Water Quality Prediction using AI and ML Algorithms , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- PRINCE KUMAR SRIVASTAVA, NEETU SINGH RUHELA, SADGURU PRAKASH, K. K. ANSARI, EFFECT OF SODIUM FLUORIDE ON ORGANIC RESERVES OF SOME TISSUES OF HETEROPNEUSTES FOSSILIS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- NEETU SINGH RUHELA, PRINCE KUMAR SRIVASTAVA, SADGURU PRAKASH, K. K. ANSARI, HISTOPATHOLOGICAL CHANGES IN THE KIDENY OF FRESHWATER TELEOSTS, CIRRHINUS MRIGALA EXPOSED TO SODIUM FLUORIDE , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper