Analytical Method Development and Validation Analysis for Quantitative Assessment of Thifluzamide by HPLC Procedure
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.1.21Keywords:
Thifluzamide , Robust, Precision, Linearity and Stability.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The precise, systematic, explicit, particular, linear, exact and robust scientific method was developed and validated for the assay of Thifluzamide in THIFLUZAMIDE 24% SC(CILPYROX) fungicide. Presently utilized Thifluzamide as a working standard having limit f assay of Thifluzamide in THIFLUZAMIDE 24% SC (CILPYROX) fungicide are not less than 95.0%. Acetonitrile, water and Phosphoric acid in the ratio (60:40:0.1 v/v/v) used as mobile phase and flow rate 1.0 ml / min. with 10 minutes run time. The detection was carried at 230 nm with column c18 - 250mm x 4.6mm x 5μ and ambient column temperature was maintained. The linearity of this method was found to be linear with a coefficient of regression at 0.999 in the concentration range of 50% to 150%. The linear regression equation was y=2174x-135.8. The present developed HPLC method is detected to be suitable. The analytical solution was detected to be stable up to 48 Hrs at room temperature.Abstract
How to Cite
Downloads
Similar Articles
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ritika Goyal, Payal Thakur, Influence of Entrepreneurial Characteristics on the Performance of MSMEs in Gautam Buddha Nagar , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

