Enhanced Symmetric Cryptography Technique (ESCTGPU) for Secure Communication between the IoT Gateway and the public Cloud Environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.12Keywords:
Internet of Things, Cloud Security, Lightweight Cryptography, Data Encryption, Symmetric Key EncryptionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The rapid expansion of the Internet of Things (IoT) has amplified the demand for secure and efficient communication with cloud platforms, where sensitive data is collected, processed, and stored. Conventional encryption standards such as DES and blowfish, though effective, are not ideally suited for resource-constrained IoT environments due to their computational overhead. To address this challenge, this paper proposes the Enhanced Symmetric Cryptography Technique to secure Gateway to Public Cloud (ESCTGPU), a lightweight yet robust block cipher specifically designed for IoT–cloud integration. ESCTGPU employs an 8-round structure with dual subkey mixing, adaptive bit rotations, and layered permutations, ensuring strong confusion and diffusion while minimizing execution time. Experimental evaluation using real IoT sensor payloads demonstrates that ESCTGPU achieves up to 40% faster encryption and decryption than DES and outperforms Blowfish in terms of efficiency, while attaining a measured 94% security strength, compared with 78% for DES and 84% for Blowfish. These results confirm that ESCTGPU offers a practical balance between speed and resilience, making it a suitable candidate for securing IoT–cloud communication where both performance and confidentiality are critical.Abstract
How to Cite
Downloads
Similar Articles
- Ishfaq Ahmad Malik, Showkat Ahmad Shah, Economic impact of COVID-19 on Ethiopian micro, small, and medium enterprises and policy measures , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Shivali Kundan, Neha Verma, Zahid Nabi, Dinesh Kumar, Satellite radiance assimilation using the 3D-var technique for the heavy rainfall over the Indian region , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Geetha Satish Pisharody, Sanjay Gupta, Understanding Resilience: An Analytical Study of Adversity Quotient Levels Among Higher Secondary Learners in Gujarat State , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Vinay Viratia, Sandeep Kumar, Shama Praveen, Tarang Shrivastava, Priyanka, Enhancing Trunk Control Balance in Children with Spastic Diplegic Cerebral Palsy: Comparative Effectiveness of the Vestibular Stimulation Technique and Standard Treatment , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Sivakumar S, Rajasekaran Kondareddy, Kalyani Ayyemperumal, Building SaaS solutions using microsoft azure for achieving safe and secure tax related software , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Arunima Dey, New gender representation on the Indian OTT platform: A study on web series “Made in Heaven” , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ECE cipher: Enhanced convergent encryption for securing and deduplicating public cloud data , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper

