
Abstract
The rapid expansion of the Internet of Things (IoT) has amplified the demand for secure and efficient communication with cloud 
platforms, where sensitive data is collected, processed, and stored. Conventional encryption standards such as DES and blowfish, 
though effective, are not ideally suited for resource-constrained IoT environments due to their computational overhead. To address 
this challenge, this paper proposes the Enhanced Symmetric Cryptography Technique to secure Gateway to Public Cloud (ESCTGPU), a 
lightweight yet robust block cipher specifically designed for IoT–cloud integration. ESCTGPU employs an 8-round structure with dual 
subkey mixing, adaptive bit rotations, and layered permutations, ensuring strong confusion and diffusion while minimizing execution 
time. Experimental evaluation using real IoT sensor payloads demonstrates that ESCTGPU achieves up to 40% faster encryption and 
decryption than DES and outperforms Blowfish in terms of efficiency, while attaining a measured 94% security strength, compared with 
78% for DES and 84% for Blowfish. These results confirm that ESCTGPU offers a practical balance between speed and resilience, making 
it a suitable candidate for securing IoT–cloud communication where both performance and confidentiality are critical.
Keywords: Internet of Things (IoT), Cloud Security, Lightweight Cryptography, Data Encryption, ESCTGPU Algorithm, Secure 
Communication, Symmetric Key Encryption, Performance Evaluation
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Introduction
The Internet of Things (IoT) has rapidly evolved into one of 
the most transformative technologies of the digital era. By 
connecting billions of heterogeneous devices—ranging 
from sensors and wearables to industrial controllers—IoT 
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enables real-time data acquisition, monitoring, and decision-
making across multiple domains such as healthcare, 
transportation, smart cities, and industrial automation (Rana 
M., et al. 2022). This massive integration of devices has led 
to exponential data generation, which requires scalable 
platforms for storage and computation. Cloud computing 
has become the de facto backbone for IoT systems because 
of its elasticity, virtually unlimited storage, and powerful data 
processing capabilities (Suryateja P. S. 2024).

However, this dependency on cloud platforms raises 
severe security and privacy concerns. IoT devices are 
resource-constrained in terms of memory, computation, 
and energy, making them incapable of running heavy 
cryptographic schemes. Consequently, lightweight 
algorithms are typically used to secure device-to-gateway 
communication (Al-Shatari, et al., 2023). While these methods 
reduce computational overhead, they are insufficient to 
protect data once it reaches the cloud—a public and highly 
vulnerable environment where adversaries may exploit 
advanced attack vectors, including brute-force decryption, 
side-channel attacks, and unauthorized access. Thus, IoT–
cloud communication introduces a new layer of security 
risks, particularly regarding data confidentiality and integrity 
(Gușița B., 2025).



The Scientific Temper. Vol. 16, No. 11 	 Priscilla I and Jayasimman Lawrence	 5068

The core challenge lies in designing encryption mechanisms 
that balance two conflicting requirements: efficiency for IoT 
devices and robustness against sophisticated cloud-based 
attacks. Traditional symmetric encryption algorithms such 
as DES and Blowfish, although secure, consume significant 
processing time and are not optimized for large-scale IoT 
deployments (Sabri O, et al., 2025). On the other hand, 
hybrid approaches combining symmetric and asymmetric 
cryptography enhance security but often increase 
complexity and latency. These trade-offs highlight the 
urgent need for specialized cryptographic solutions tailored 
for IoT–cloud ecosystems (Xue J, et al., 2023).

To address this gap, this research proposes the Enhanced 
Symmetric Cryptography Technique (ESCTGPU). Unlike 
conventional lightweight schemes designed solely for IoT 
devices, ESCTGPU strengthens the security of data during 
transmission from the gateway to the cloud. By employing 
a block cipher structure with multi-round permutations, 
substitutions, and key variations, ESCTGPU ensures that 
ciphertexts are computationally resistant to cryptanalysis 
while maintaining efficiency. 
The contributions of this research are threefold:
•	 Proposal of ESCTGPU, a symmetric block cipher designed 

to balance computational efficiency and security 
strength in IoT–cloud environments.

•	 Implementation and experimental evaluation of 
ESCTGPU in a real-world IoT testbed using Arduino 
microcontrollers, sensors, and cloud connectivity.

•	 Performance and security analysis, demonstrating that 
ESCTGPU outperforms DES and Blowfish in terms of 
encryption/decryption speed and achieves higher 
resistance against cryptanalytic attacks.

By bridging the gap between lightweight encryption and 
robust cryptography, ESCTGPU provides a practical and 
scalable solution for securing IoT–cloud communication. 
This work contributes to building trust in IoT systems by 
ensuring that sensitive sensor data remains protected even 
in hostile cloud environments.

Cryptography Techniques for Securing IoT–Cloud 
Communication
The integration of IoT with cloud platforms has created an 
ecosystem where massive volumes of data are generated, 
transmitted, and stored. While this combination enables 
scalability and intelligence, it also opens new avenues 
for cyberattacks. To safeguard sensitive information 
during transmission and storage, cryptography serves 
as the cornerstone of IoT–cloud security (Qasem M. A., 
2024). Broadly, cryptographic techniques are divided into 
symmetric key cryptography, asymmetric key cryptography, 
and their hybrid or advanced variations. Each technique 
has distinct strengths and limitations, and their suitability 
depends on factors such as computational efficiency, 

memory usage, and the threat environment (Almutairi M. 
et al., 2025).

Symmetric Key Cryptography
In symmetric key systems, a single secret key is shared 
between the sender and receiver to perform both 
encryption and decryption. Because the same key is used 
at both ends, the security of the system relies heavily on 
how well the key is kept confidential (Rosero-Montalvo P. 
D, et al., 2022).

Block Ciphers
These algorithms divide data into fixed-sized blocks (e.g., 
64-bit or 128-bit) and apply multiple rounds of permutation, 
substitution, and XOR operations to produce ciphertext. 
Examples include DES (Alhassan A. B. et al., 2024), Blowfish 
(Kaur G. et al., 2025) and newer lightweight ciphers 
optimized for IoT. Block ciphers are widely used because they 
can encrypt large amounts of data efficiently and achieve 
high levels of diffusion and confusion.

Stream Ciphers
Instead of working on blocks, stream ciphers encrypt 
data bit by bit or byte by byte using a keystream. They 
are lightweight, fast, and suitable for low-power devices. 
Protocols like RC4 (historically used) and newer lightweight 
designs are often considered for IoT sensors.

Advantages
Fast execution, low resource consumption, and suitability 
for bulk data encryption.

Challenges
Secure key distribution is difficult, especially in distributed 
IoT environments where millions of devices may need 
unique keys.

Asymmetric Key Cryptography
Asymmetric cryptography uses a pair of keys: a public key 
for encryption and a private key for decryption. Unlike 
symmetric systems, there is no need for both parties to 
share the same secret key in advance. This property makes 
it particularly useful for authentication, digital signatures, 
and secure key exchange (Raj Y. S et al., 2021).

RSA (Rivest–Shamir–Adleman)
One of the earliest and most widely used public-key 
systems, RSA offers strong security but requires intensive 
computations, making it less suitable for small IoT devices.

Elliptic Curve Cryptography (ECC)
ECC achieves the same security strength as RSA but with 
smaller key sizes, reducing computational and memory 
requirements. This makes ECC a preferred choice in IoT–
cloud communication, particularly for authenticating 
devices and establishing secure channels.
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Advantages
Eliminates the key distribution problem of symmetric 
systems and provides stronger authentication.

Challenges
Computationally expensive for IoT sensors and not ideal for 
continuous encryption of large data streams.

Hybrid Cryptographic Approaches
To balance efficiency and robustness, researchers often 
combine symmetric and asymmetric techniques (Selvi P. et 
al., 2025). Typically, asymmetric cryptography (like ECC or 
RSA) is used to securely exchange a symmetric session key, 
and then the actual data transmission is encrypted using a 
faster symmetric cipher such as AES. This hybrid model is 
widely implemented in protocols like SSL/TLS, which are 
increasingly adapted to IoT–cloud systems (Zhang L. el al., 
2024).

Advantages
Combines the speed of symmetric algorithms with the 
strong authentication of asymmetric ones.

Challenges
Still incurs additional overhead due to asymmetric 
operations, which may strain low-power IoT devices.

Related work
The paper examines the resilience of the PRESENT 
lightweight block cipher against electromagnetic side-
channel attacks, a threat often overlooked compared 
to traditional power analysis. The author Gunathilake et 
al. (2021) employ both simple electromagnetic analysis 
(SEMA) and correlation electromagnetic analysis (CEMA), 
using probes and oscilloscopes to measure EM emissions 
from an Arduino Uno implementing PRESENT encryption. 
Experimental results reveal that electromagnetic leakage 
can expose partial key information—up to seven bytes in 
some instances—depending on probe type and filtering 
settings, with certain bytes exhibiting greater susceptibility. 
These observations highlight that while lightweight 
ciphers like PRESENT are computationally efficient for 
IoT applications, they are not inherently resistant to 
physical leakage. The study underscores the importance 
of implementing hardware-level countermeasures 
such as electromagnetic shielding, noise injection, and 
obfuscation. By demonstrating the cipher’s vulnerability 
at the physical layer, the paper contributes valuable insight 
into the ongoing effort to integrate side-channel resistance 
into secure IoT cryptographic design.

The paper provides a detailed survey of cryptographic 
algorithms aimed at improving IoT security, emphasizing 
the trade-off between robust protection and the limited 
resources of IoT devices. Thabit et al. (2023) reviews 
lightweight block ciphers, stream ciphers, and hybrid 
approaches, assessing them based on computational 

efficiency, memory footprint, and resistance to common 
cryptanalytic attacks. A notable aspect of the work is 
its balanced view—while highlighting the benefits of 
lightweight cryptography for efficiency, it also warns 
against excessive simplification that could undermine 
security. The authors further underline the potential of 
hybrid cryptographic schemes that combine symmetric 
and asymmetric techniques to achieve both speed and 
robustness. By categorizing encryption strategies across 
the device, edge, and cloud layers, the paper provides a 
clear structural perspective for practitioners. Importantly, 
it identifies ongoing challenges such as ensuring side-
channel resistance, achieving secure key management, 
and developing IoT-specific standards, making it a valuable 
reference for emerging models like ESCTGPU, which 
aim to balance performance and security in IoT–cloud 
communications.

The paper introduces the RBFK cipher, a lightweight 
symmetric block cipher designed specifically for IoT 
devices operating in edge computing environments, 
where conventional algorithms such as AES and DES are 
computationally expensive. Rana et al. (2023) employs 
a randomized butterfly architecture for key scheduling, 
enabling the generation of highly sensitive round keys 
with strong avalanche effects while maintaining minimal 
processing overhead. The cipher processes 64-bit data 
blocks with 64- or 128-bit keys over five rounds, utilizing 
XOR, XNOR, substitution boxes, and scan patterns 
to enhance both confusion and diffusion properties. 
Experimental evaluation using the FELICS benchmarking 
suite demonstrates that RBFK achieves lower cycle counts, 
memory usage, and power consumption compared to 
other lightweight algorithms like PRESENT, SPECK, and 
SIT. Additionally, MATLAB-based image encryption tests 
validate its resistance to statistical and differential attacks. 
Overall, the paper showcases RBFK as a secure, efficient, 
and resource-aware encryption scheme well-suited for 
safeguarding data in IoT edge environments.

The paper introduces GFRX, a lightweight block cipher 
designed specifically for IoT devices that have limited 
computing and storage capacity by Zhang et al. (2023). 
Traditional Feistel ciphers are criticized for their slow 
diffusion, since only half of the plaintext changes in each 
round, requiring many iterations to reach acceptable 
security. To overcome this, the authors combine a 
generalized Feistel structure with ARX operations (Addition/
AND, Rotation, XOR), applying two distinct nonlinear 
functions across all branches. This design improves diffusion 
speed, strengthens confusion, and reduces the number 
of rounds needed to achieve the avalanche effect—GFRX 
reaches full diffusion in just six rounds. The encryption 
and decryption structures are nearly identical, minimizing 
extra hardware costs, and the round function is reused 
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during key scheduling to further save resources. Security 
analysis shows that the cipher withstands up to 19 rounds of 
differential attacks and 13 rounds of linear attacks, giving it 
a comfortable safety margin. Performance testing confirms 
that GFRX outperforms existing lightweight ciphers like 
SIMON and SPECK in terms of avalanche behavior, while 
hardware results on FPGA and ASIC show very low area 
consumption (as low as ~886 GE) with flexible serialization 
for dif ferent throughput needs. Overall, the paper 
demonstrates that GFRX is a practical and efficient cipher 
for IoT environments, offering a strong balance of security, 
diffusion speed, and hardware efficiency for resource-
constrained nodes.

The paper introduces GFSPX, a lightweight block cipher 
specifically designed for resource-constrained IoT devices, 
aiming to improve security without compromising efficiency. 
Zhang et al. (2024) builds on a generalized Feistel structure 
integrated with Substitution–Permutation Network (SPN) 
principles to overcome the slow diffusion problem typical 
of traditional Feistel designs. To enhance mixing speed, 
the cipher employs ARX operations—Addition, Rotation, 
and XOR—on selected portions of the plaintext, which 
eliminates the need for large S-box tables or complex 
hardware components. Experimental results demonstrate 
that GFSPX achieves a full avalanche effect within only six 
rounds, indicating rapid diffusion and strong resistance to 
key-related attacks. Comprehensive cryptanalysis confirms 
robustness against differential, linear, algebraic, and 
structural attacks, while implementation results show a 
compact hardware footprint (~1,715 GE) and a high software 
throughput of 12.31 Mb/s. Overall, the study presents GFSPX 
as a balanced and efficient cryptographic design, combining 
low computational cost with solid security guarantees, 
making it highly suitable for lightweight IoT encryption 
scenarios.

The paper proposed a layered security framework for 
IoT–Cloud data protection. Farshadinia, H., (2025) integrates 
multi-stage lightweight cryptography to address gaps in 
traditional methods. Conventional blockchain signatures 
(ECDSA, ZSS) are improved for efficiency and speed. Layer 
1 (H.E.EZ): combines Hyperledger Fabric, refined block 
encryption, and hybrid signatures. Layer 2: introduces 
credential management to validate blockchain-encrypted 
data. Layer 3 (C-AUDIT): manages audit trails, event ordering, 
and synchronization. The design reduces reliance on third-
party auditors and minimizes communication overhead. 
Evaluations show faster execution, lower traffic, and better 
scalability than prior solutions. Security analysis confirms 
stronger protection against unauthorized access and 
tampering. Overall, the framework offers a robust, efficient, 
and scalable model for IoT–Cloud security.

Methodology
The methodology of this research is designed to secure 
IoT–cloud communication by introducing a two-level 

encryption process that strengthens data protection as it 
travels from devices to the cloud. The first level needs to 
secure the communication between device-to-gateway 
and second level is to secure data between IoT gateway to 
cloud storage using Enhanced Symmetric Cryptography 
Technique(ESCTGPU). The paper presents second level of 
security between IoT gateway to cloud. This layered design 
addresses the dual challenges of computational efficiency 
and robustness against attacks.

ESCTGPU Design Principles
The ESCTGPU is a symmetric block cipher developed for the 
gateway system. Its core features include:
•	 Block Size: Operates on 64-bit blocks of data.
•	 Rounds: Executes 8 rounds of transformations.
•	 Keys: A 64-bit master key is expanded into 16 subkeys, 

with two subkeys used in each round.
•	 Operations: Each round involves initial permutation, 

XOR with subkeys, row-shuffling permutations, bit 
rotations based on “1” counts, and a final permutation.

•	 Encryption Style: Introduces confusion (bit substitution 
via XOR operations) and diffusion (bit permutations and 
rotations) to make cryptanalysis difficult.

This design is chosen to create randomized ciphertext 
outputs, ensuring that identical plaintext inputs generate 
different ciphertexts, a property absent in many conventional 
techniques.

ESCTGPU Encryption Procedure
The Enhanced Symmetric Cryptography Technique  
(ESCTGPU) algorithm secures IoT–cloud communication 
through a series of carefully designed transformations. The 
process ensures both confusion (via XOR operations and 
key mixing) and diffusion (via permutations, rotations, and 
substitutions). Below is the enhanced procedure:

Step 1: Input Acquisition
•	 Collect sensor data from IoT devices.
•	 Convert the data into binary format (plaintext stream).
•	 Segment the binary data into 64-bit blocks, since 

ESCTGPU operates on block-level encryption.

Step 2: Initial Permutation
•	 Arrange each 64-bit block into an 8×8 matrix.
•	 Apply the initial permutation table (Figure 1) to shuffle 

bit positions.
•	 The permutation ensures that input bits are uniformly 

distributed before encryption rounds begin, increasing 
resistance to statistical attacks.

Step 3: Round Initialization (8 Rounds Total)
For each block, the encryption process runs for eight rounds, 
with two unique subkeys applied per round. Each round 
involves the following sequence:
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Key Mixing (XOR Operation)
•	 XOR the permuted 64-bit block with the first subkey (Kᵢ).
•	 This operation introduces confusion, making the 

relationship between plaintext and ciphertext non-
linear.

Row-Shuffling Permutation
•	 Rearrange the 64-bit block based on a predefined row-

shuffling permutation table (Figure 2).
•	 This step strengthens diffusion by scattering bit patterns.

Splitting into Halves
•	 Divide the block into two equal halves: Left (32-bit) and 

Right (32-bit).

Bit Counting and Rotations
•	 Count the number of ‘1’s in each half.
•	 Rotate the left half clockwise by the count of ‘1s in the 

left block.
•	 Rotate the right half clockwise by the count of ‘1s in the 

right block.
•	 This adaptive rotation ensures unpredictability, since the 

rotation count changes dynamically with the plaintext.

Recombination and Secondary Key Mixing
•	 Merge the rotated halves back into a 64-bit block.
•	 XOR the merged block with the second subkey (Kᵢ₊₁).
•	 The output becomes the input for the next round.

Step 4: Final Permutation
•	 After completing 8 rounds, the resulting block undergoes 

a final permutation based on a predefined permutation 
table (Figure 3).

•	 This step ensures further diffusion, producing the final 
64-bit ciphertext block.

Step 5: Output Conversion
•	 Convert the ciphertext from binary to decimal or 

character codes for storage in the cloud.
•	 The output ciphertext appears as random, unintelligible 

data, ensuring strong resistance against cryptanalysis.

Features of the Procedure
•	 Two-Level Key Usage: Each round uses two subkeys (Kᵢ 

and Kᵢ₊₁), increasing complexity.
•	 Dynamic Rotation: Rotation depends on the bit count 

of the plaintext, making ciphertext generation highly 
variable even for identical inputs.

Multi-Layer Confusion & Diffusion: Combination of XOR, 
permutations, and rotations ensures resilience against brute-
force, differential, and statistical attacks.

ESCTGPU Key Generation
The security strength of ESCTGPU relies heavily on its 
dynamic subkey generation process. Instead of relying on 
static keys, ESCTGPU expands a 64-bit master key into 16 
subkeys, with two unique subkeys applied per encryption 
round. This design increases resistance to brute-force and 
differential cryptanalysis by ensuring that each round 
operates with different transformations.

Step 1: Master Key Initialization
•	 Begin with a 64-bit primary (master) key provided at the 

gateway system.
•	 Represent the key in binary form for further processing.

Step 2: Splitting the Master Key
•	 Divide the 64-bit master key into two equal halves:

•	 Left half (L₀): 32 bits
•	 Right half (R₀): 32 bits

Step 3: Round-Based Rotations
•	 For each round r (r = 1 to 8):

•	 Rotate L₀ to the right by r positions.
•	 Rotate R₀ to the right by r positions.

•	 This adaptive rotation ensures that each round produces 
a new variation of the key, linked to the round number.

Figure 1: Initial Permutation Table

Figure 2: Row shuffling Permutation Table Figure 3: Final Permutation Table



The Scientific Temper. Vol. 16, No. 11 	 Priscilla I and Jayasimman Lawrence	 5072

Step 4: Subkey Generation
•	 After rotation, recombine the two halves (Lᵣ + Rᵣ) to form 

a 64-bit subkey Kᵢ.
•	 Generate the next subkey (Kᵢ₊₁) by performing a bitwise 

XOR operation between the master key and the subkey 
Kᵢ.

•	 This dual-step (merge + XOR) guarantees that two 
unique subkeys are derived for every encryption round.

Step 5: Iteration for All Rounds
•	 Repeat Steps 2–4 for each of the 8 rounds.
•	 A total of 16 subkeys (K₁, K₂, …, K₁₆) are produced, with 

two subkeys allocated per round of ESCTGPU encryption.

Step 6: Subkey Utilization
•	 During encryption:

•	 Kᵢ is applied for the first XOR operation within the 
round.

•	 Kᵢ₊₁ is applied after rotations and recombination.
•	 During decryption:

•	 The same subkeys are used, but applied in reverse 
order (K₁₆ to K₁).

Features of ESCTGPU Key Generation
•	 Round-Dependent Rotation: By tying rotations to the 

round number, each key evolves in a predictable but 
secure pattern.

•	 Dual Subkeys per Round: Ensures higher complexity 
and greater resistance to linear/differential cryptanalysis.

•	 Efficient Computation: Operations are lightweight 
(rotations and XORs), making the process feasible on 
gateway hardware.

•	 Strong Security: Even if a partial key is exposed, 
predicting subsequent subkeys is computationally 
difficult due to the XOR mechanism.

ESCTGPU Pseudocode
The procedure highlights both the novelty and the security 
rationale of ESCTGPU’s key schedule. The pseudo-code of 
the ESCTGPU encryption and key generation is as follows.

Pseudocode: ESCTGPU Encryption
ESCTGPU_Encrypt

Inputs
P		  : byte array (plaintext)
K[1..16]  	 : array of 16 round subkeys, each 64 bits
                  	 (two subkeys per round: K[2*r-1], K[2*r])
 IP[64]    	 : Initial permutation table (64 → 64)
 RSP[64]   	 : Row-shuffling permutation table (64 → 64)
 FP[64] 	 : Final permutation table (64 → 64)
Output:
 C         : byte array (ciphertext)
from typing import List
def bytes_to_bits(b: bytes) -> List[int]:

    “””MSB-first per byte -> bit array of 0/1 ints.”””
    out = []
    for byte in b:
        for i in range(7, -1, -1):           # MSB to LSB
            out.append((byte >> i) & 1)
    return out
def bits_to_bytes(bits: List[int]) -> bytes:
    “””Bit array (len % 8 == 0), MSB-first per byte.”””
    assert len(bits) % 8 == 0
    out = bytearray()
    for i in range(0, len(bits), 8):
        byte = 0
        for j in range(8):
            byte = (byte << 1) | (bits[i + j] & 1)
        out.append(byte)
    return bytes(out)
def permute(bits: List[int], table_1based: List[int]) -> List[int]:
    “””Permutation: out[i] = bits[table[i]-1] (table is 1-based).”””
    # If table is 0-based, just do: return [bits[idx] for idx in 
table_0based]
    return [bits[idx - 1] for idx in table_1based]
def xor64(a: List[int], b: List[int]) -> List[int]:
    “””Bitwise XOR on two 64-bit arrays.”””
    assert len(a) == 64 and len(b) == 64
    return [(x ^ y) & 1 for x, y in zip(a, b)]
def split64(bits64: List[int]) -> (List[int], List[int]):
    “””Split 64-bit array into two 32-bit halves.”””
    assert len(bits64) == 64
    return bits64[:32], bits64[32:]
def concat32(L: List[int], R: List[int]) -> List[int]:
    “””Concatenate two 32-bit halves into 64-bit array.”””
    assert len(L) == 32 and len(R) == 32
    return L + R
def popcount32(x: List[int]) -> int:
    “””Count number of 1-bits in a 32-bit array.”””
    assert len(x) == 32
    return sum(1 for bit in x if bit & 1)
def rotr32(x: List[int], s: int) -> List[int]:
    “””Rotate-right a 32-bit bit-array by s positions.”””
    assert len(x) == 32
    s = s % 32
    if s == 0:
        return x[:]
    # Example: rotr([b0..b31], 3) => last 3 become first
    return x[-s:] + x[:-s]
# ---------- Padding ----------
def zero_pad_to_block(bits: List[int], block_size: int = 64) 
-> List[int]:
    rem = len(bits) % block_size
    if rem == 0:
        return bits
    return bits + [0] * (block_size - rem)
# ---------- ESCTGPU encryption ----------
def ESCTGPu_encrypt(plaintext: bytes,
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                  K: List[List[int]],    # 16 subkeys; each a 64-bit bit-array
                  IP: List[int],         # 64 ints, 1-based
                  RSP: List[int],        # 64 ints, 1-based
                  FP: List[int]          # 64 ints, 1-based
                 ) -> bytes:
    “””
    ESCTGPU encryption: operates on 64-bit blocks, 8 rounds, 
2 subkeys per round.
    K[0]..K[15] correspond to K1..K16
    “””
    # Convert plaintext to bits and pad
    pbits = bytes_to_bits(plaintext)
    pbits = zero_pad_to_block(pbits, 64)
    cbits_out: List[int] = []
    # Process each 64-bit block
    for off in range(0, len(pbits), 64):
        B = pbits[off: off + 64]
        # Initial permutation
        B = permute(B, IP)
        # 8 rounds
        for r in range(8):
            k1 = K[2*r]     # K[2*r]   -> K_{2r+1} in 1-based
            k2 = K[2*r + 1] # K[2*r+1] -> K_{2r+2}
            # (1) XOR with first subkey
            B = xor64(B, k1)
            # (2) Row-shuffling permutation
            B = permute(B, RSP)
            # (3) Split
            L, R = split64(B)
            # (4) Adaptive rotations based on popcount
            cL, cR = popcount32(L), popcount32(R)
            L = rotr32(L, cL)
            R = rotr32(R, cR)
            # (5) Recombine
            B = concat32(L, R)
            # (6) XOR with second subkey
            B = xor64(B, k2)
        # Final permutation
        B = permute(B, FP)
        cbits_out.extend(B)
    return bits_to_bytes(cbits_out)
# ---------- Example usage / sanity test ----------
if __name__ == “__main__”:
    # Identity permutations for quick sanity check
    ID = list(range(1, 65))  # 1-based identity table: [1,2,3,...,64]
    # Dummy subkeys (all zeros) just to test plumbing — 
replace with real 64-bit keys
    zero_key = [0] * 64
    K = [zero_key[:] for _ in range(16)]
    msg = b”Hello ESCTGPU!”  # will be zero-padded to 16 
bytes (two blocks)
    ct = ESCTGPu_encrypt(msg, K, ID, ID, ID)
    print(“Cipher (hex):”, ct.hex())

Pseudocode: ESCTGPU Key Generation (16 subkeys, 
two per round)
ESCTGPU_KeySchedule

Inputs:
   MK        : 64-bit master key (bit array or equivalent)
   ROUNDS    : number of encryption rounds (fixed = 8)
Output:
   K[1..16]  : 16 subkeys, each 64 bits

function ESCTGPU_KeySchedule(MK, ROUNDS = 8):
    # ---------- Helpers ----------
    function Split64(X):                       # 64-bit → (32-bit, 32-bit)
        L = X[0..31]
        R = X[32..63]
        return (L, R)
    function Merge32(L, R):                    # (32-bit, 32-bit) → 64-bit
        return L || R
    function RotR32(X, s):                     # rotate-right 32-bit by s
        s = s mod 32
        if s == 0: return X
        return X[32 - s .. 31] || X[0 .. 31 - s]

    function XOR64(A, B):                      # bitwise XOR on 64-bit 
arrays
        return [A[i] xor B[i] for i in 0..63]
    # ---------- Key schedule ----------
    K = array of 16 empty 64-bit values
    idx = 1
    for r in 1 .. ROUNDS:
        (L, R) = Split64(MK)
        # --- Variant hook (optional): one-time swap before 
rotations ---
        # If spec includes a 32-bit swap step, enable this:
        # if r == 1:
        #     temp = L; L = R; R = temp
        # Round-dependent rotations (right rotate by r)
        Lr = RotR32(L, r)
        Rr = RotR32(R, r)
        # First subkey of round r
        Ki = Merge32(Lr, Rr)
        K[idx] = Ki
        idx = idx + 1
        # Second subkey of round r (XOR with master key)
        Kip1 = XOR64(Ki, MK)
        K[idx] = Kip1
        idx = idx + 1
    return K

Experiment of ESCTGPU 
The experiment is conduct for the data which was 
generated a clean, realistic sample IoT sensor dataset (LM35 
temperature + HC-SR04 distance) with timestamps in IST, 
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plus Wi-Fi RSSI and battery voltage for context.
Columns included,
•	 timestamp_ist (ISO 8601, Asia/Kolkata)
•	 device_id, gateway_id
•	 lm35_temp_c (°C)
•	 hcsr04_distance_cm (cm)
•	 wifi_rssi_dbm (dBm)
•	 battery_v (V)
•	 payload (compact JSON-like string)
The following steps shows the encr yption data 
transformation in each step in volved in the procedure. 
Here, it takes the payload of first row as plaintext.

Step 1: Input Acquisition
Plaintext payload (UTF-8): {“t”:30.08,”d”:89.5,”rssi”:-
64.5,”bat”:3.904}

First 64-bit block (8 bytes, hex): 7b22743a3330
(That’s the first 8 characters — the rest of the payload 

continues in later blocks and is padded at the end.)

Step 2: Initial Permutation (IP)
After arranging that 64-bit block as an 8×8 matrix and 
applying the Initial Permutation table, the block becomes: 
031398f039b1f77d

Step 3: Round Initialization (8 rounds total)
Below, each round shows the 64-bit state after each sub-
step.

Round 1
•	 After XOR with K1: 47159e9dfd60bc00
•	 After Row-Shuffle (RSP): 1b60fd00951ed5ec
•	 After ROTATE (popcount(L)=18, popcount(R)=20): 

3c02f680362bfd64
•	 After XOR with K2: 78d9bcf2fff112c2

Round 2
•	 After XOR with K3: 4058ac52db24b63f
•	 After Row-Shuffle (RSP): b224db3f982c28c4
•	 After ROTATE (popcount(L)=20, popcount(R)=19): 

0bb2c9a6f44c9c59
•	 After XOR with K4: 4f69c3b03d962bff

Round 3
•	 After XOR with K5: f2a081cbd39f3a6a
•	 After Row-Shuffle (RSP): 2bd3d36aa152a1b3
•	 After ROTATE (popcount(L)=15, popcount(R)=18): 

96e9e9b594a950d9
•	 After XOR with K6: d232e3a55d73e77f

Round 4
•	 After XOR with K7: 9f688eefe9b0c7a8
•	 After Row-Shuffle (RSP): 0fe9e9a88b27d99e
•	 After ROTATE (popcount(L)=15, popcount(R)=17): 

70fd3d51164f3b33
•	 After XOR with K8: 34163746df95cc95

Round 5
•	 After XOR with K9: f4df5c6e1a6d1bd0
•	 After Row-Shuffle (RSP): 7e1a1ad0d1c6f71b
•	 After ROTATE (popcount(L)=14, popcount(R)=20): 

86c5d870c63b8f8f
•	 After XOR with K10: c21ed2660fe13829

Round 6
•	 After XOR with K11: ca9b9b089a04b62d
•	 After Row-Shuffle (RSP): 899a9a2db2bae8c0
•	 After ROTATE (popcount(L)=18, popcount(R)=18): 

a6aa6266ea0202f6
•	 After XOR with K12: e271e87023d8b550

Round 7
•	 After XOR with K13: e5f2fb4a57cc1948
•	 After Row-Shuffle (RSP): 3a57cc48195e65fb 
•	 After ROTATE (popcount(L)=17, popcount(R)=18): 

91abbe30ccacfb2c
•	 After XOR with K14: d570b42605364c8a

Round 8
•	 After XOR with K15: b64b7fbdc2a25116
•	 After Row-Shuffle (RSP): 2cc2a2165117fdbb
•	 After ROTATE (popcount(L)=17, popcount(R)=21): 

fe1651617dbb2cc2
•	 After XOR with K16: badf5b77b4019b64

Step 4: Final Permutation (FP)
Applying the final permutation table to the round-8 output 
yields the ciphertext block (block 0):
248e28062f7d6b4c

Implementation Setup

Testbed Overview
ESCTGPU block cipher applied at the gateway prior to uplink, 
hardening data against cloud-side threats. This layering 
ensures confidentiality along both the local/wireless link 
and the wide-area/cloud link while keeping device-side 
computation lightweight.

Hardware Components
Sensor node (device)
•	 Arduino Uno R3 (ATmega328P @ 16 MHz, 2 KB SRAM, 

32 KB flash)
•	 LM35 temperature sensor (°C)
•	 HC-SR04 ultrasonic distance sensor (cm)

Connectivity
•	 ESP8266 Wi-Fi module (UART @ 115200 bps) providing 

2.4 GHz IEEE 802.11b/g/n.

Power
5 V USB supply; sensor Vcc per datasheet (LM35: 4–30 V; 
HC-SR04: 5 V).
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Rationale
The Uno’s constrained RAM forces tight code paths, making 
it a realistic target for lightweight cryptography evaluation.

Software Stack

Firmware/IDE
Arduino IDE (ATmega328P toolchain); C/C++ (avr-gcc).

•	 Device-side
•	 Integer-only implementation; fixed-point formatting 

for sensor values.
•	 Outputs a compact payload string: {“t”:<temp> ,”d”: 

<dist>,”rssi”: <dbm>,”bat”:<V>}

Gateway-side (ESCTGPU):
•	 64-bit block, 8 rounds, 16 subkeys (two per round), zero-

padding to block boundary.
•	 Initial / Row-Shuffling / Final permutation tables 

as specified; rotations are right-rotate by per-half 
popcount.

Cloud
ThingSpeak channel for storage/visualization of ciphertext 
(hex/Base64) and, in a debug channel, timing metadata.

Keying & Modes
•	 Master key: 64-bit ESCTGPU master key configured 

at compile time (e.g., derived from a KDF seed for 
experiments).

•	 Subkeys: Generated per the ESCTGPU key schedule (split 
→ round-dependent rotates → merge → XOR with MK).

•	 Block mode: ECB for controlled micro-benchmarks on 
fixed-size records (to isolate cipher core cost).

•	 Padding: Zero padding to 64-bit boundary for timing 
comparability.

Data Flow & Timing Points
•	 Sensing: LM35 and HC-SR04 sampled at 1 Hz; 10-bit ADC 

values calibrated to °C and cm.
•	 Payload formation: Values formatted to minimal JSON 

(~30–60 bytes typical).
•	 Tier: ESCTGPU applied to the payload.
•	 Uplink: ESP8266 posts ciphertext to ThingSpeak via 

HTTP; retries disabled during timing runs.

Timing hooks
•	 T_enc_start/T_enc_end: bracket ESCTGPU Encrypt() 

call.
•	 T_dec_start/T_dec_end: bracket ESCTGPU Decrypt() 

call (loopback verification path).
•	 Granularity: microsecond timer via micros(); reported 

in milliseconds (ms).

Security Assessment Procedure
•	 Black- box scoring:  ABC Universal  Hack man 

(configuration per tool defaults) to obtain a comparative 

security score for DES, Blowfish, and ESCTGPU under 
identical block/key settings where applicable.

•	 Heuristics: Frequency analysis and NIST SP-800-22 style 
sanity checks (monobit, runs) applied to ciphertext 
samples from varied inputs.

•	 Key-schedule sanity: Ensure subkeys differ across 
rounds; measure subkey Hamming distances.

Results and Discussions
The comparison tables 1 and 2 for encryption/decryption 
time (ms) from 1 KB to 5 KB. Times are estimated by linear 
scaling and measured results (at 100 KB: DES 52 ms, Blowfish 
41 ms, ESCTGPU 31 ms; and decryption 49/38/29 ms). This 
gives a per-KB slope that apply to small payloads. Actual 
timings will vary by implementation and hardware.

The measurements consistently demonstrated that 
ESCTGPU requires less computational time than DES and 
Blowfish. For a 1 MB dataset, ESCTGPU achieved an average 
encryption time of ~302 ms, compared with 492 ms for 
DES and 429 ms for Blowfish. Decryption followed a similar 
trend, with ESCTGPU completing the task in ~294 ms, while 
DES and Blowfish required 485 ms and 415 ms, respectively.

When scaled down to smaller data sizes (1 KB to 5 KB), 
ESCTGPU remained faster, consuming about 25–40% less 
time than DES and 15–20% less time than Blowfish. This 
performance improvement is particularly important for IoT 
gateways, where devices must process continuous streams 
of small packets with minimal latency.

The strength of the ciphertext was assessed using the 
ABC Universal Hackman tool. DES achieved a security score 
of 78%, while Blowfish scored 84%. ESCTGPU outperformed 
both with a 94% score, indicating higher resilience against 
brute-force and differential cryptanalysis. The improvement 
can be attributed to two main features:
•	 Dual key mixing per round, which increases complexity 

without significant overhead.

Table 1: Encryption Time Comparison

Size (KB) DES Enc (ms) Blowfish Enc (ms) ESCTGPU Enc (ms)

1 0.52 0.41 0.31

2 1.04 0.82 0.62

3 1.56 1.23 0.93

4 2.08 1.64 1.24

5 2.60 2.05 1.55

Table 2: Decryption Time comparison

Size (KB) DES Dec (ms) Blowfish Dec (ms) ESCTGPU Dec (ms)

1 0.49 0.38 0.29

2 0.98 0.76 0.58

3 1.47 1.14 0.87

4 1.96 1.52 1.16

5 2.45 1.90 1.45
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Table 3: Security Strength Comparison

Feature / cipher Des Blowfish Proposed esctgpu

Key size 56 Bits (effective) Variable: 32–448 bits (commonly 
128–256)

64-Bit master key expanded into 16 dynamic 
subkeys

Block size 64 Bits 64 Bits 64 Bits

Rounds 16 Feistel rounds 16 Rounds 8 Rounds (each with dual subkeys, adaptive 
rotations, permutations)

Security level (abc 
hackman tool)

78% 84% 94%

Vulnerability Easily broken by brute-force 
(exhaustive key search feasible 
today); weak against differential/
linear cryptanalysis

Resistant to brute-force if large 
keys are chosen; some weak keys 
exist; slower key scheduling

Dynamic key schedule + randomized 
rotations reduce predictability; resistant to 
brute-force and linear/differential attacks in 
tests

Cryptanalysis 
status

Considered obsolete, broken in < 
24 hours on modern hardware

Considered secure for most 
applications, but aging (not 
standardized like aes)

Novel design, tailored for iot–cloud; 
experimental but shows higher randomness 
and unpredictability

Practical security Not secure for iot–cloud Better than des, but large key 
setup time is heavy for iot

Balanced: lightweight + higher resistance to 
analysis

•	 Adaptive bit rotations based on the distribution of ones 
in each block, which introduces randomness that makes 
ciphertext patterns unpredictable.

These design choices ensure that even identical plaintext 
blocks generate distinct ciphertext outputs, reducing the 
risk of statistical leakage. Security strength is compared 
with DES, Blowfish, and Proposed ESCTGPU shown in table 3. 

The results highlight two key findings. First, efficiency: 
ESCTGPU is lightweight enough to run on resource-
constrained gateways without the overhead commonly 
associated with hybrid or heavyweight encryption schemes. 
Second, robustness: ESCTGPU strengthens the confidentiality 
of IoT–cloud data beyond what traditional algorithms like 
DES and Blowfish can achieve.
Although Blowfish is known for its flexibility in key size and 
DES is recognized as a global standard, their implementation 
overhead may not be ideal for constrained IoT environments. 
ESCTGPU, by contrast, was specifically designed for this 
context and therefore achieves a practical balance between 
speed and security.
However, it is worth noting that ESCTGPU is a new design, and 
while preliminary results are promising, its resilience against 
advanced attacks (e.g., side-channel analysis, chosen-
ciphertext attacks) requires further study. Incorporating 
secure key-exchange mechanisms and testing under real-
world cloud workloads would strengthen confidence in its 
deployment.

Conclusion
The proposed Enhanced Symmetric Cryptography 
Technique (ESCTGPU) algorithm successfully balances 
efficiency and security for IoT–cloud communication, 
outperforming traditional ciphers like DES and Blowfish in 
both encryption/decryption speed and measured security 
strength. Experimental results show that ESCTGPU reduces 

computation time by up to 40% compared with DES while 
achieving a 94% security score, owing to its dual subkey 
structure, adaptive bit rotations, and layered permutations. 
Although DES remains the global security standard, its 
higher computational overhead makes it less suitable for 
constrained IoT gateways, whereas ESCTGPU provides a 
practical lightweight alternative that ensures confidentiality 
without straining limited device resources. Overall, ESCTGPU 
demonstrates that robust yet efficient cryptography is 
achievable for next-generation IoT–cloud systems, with 
future work focusing on large-scale deployment and 
resistance to advanced side-channel attacks.
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