Statistical Modeling of Consumer Preferences for Eco-friendly Digital Products: A Data-driven Approach Toward Sustainable Consumption in India
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.14Keywords:
Sustainable consumption, consumer analytics, digital behavior, eco-friendly products, statistical modeling, circular economy, ESG marketingDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As environmental concerns intensify globally, consumer behavior is undergoing a paradigm shift, particularly within rapidly digitizing economies like India. In this context, understanding and statistically modeling consumer preferences for eco-friendly digital products is both timely and essential. This study offers a data-driven approach to decoding sustainable consumption patterns, focusing on key behavioral and demographic indicators influencing green purchase intent. Drawing from structured survey responses of over 350 urban Indian consumers, the research employs a suite of advanced statistical tools-including multiple regression, principal component analysis (PCA), logistic regression, and chi-square tests-to examine correlations between sustainability-driven choices and variables like age-of-consumers, education-of-consumers, income, digital literacy with prior exposure to environmental campaigns. The analysis reveals that awareness of sustainability issues is significantly associated with behavioral outcomes like trust in eco-brands, willingness to pay a premium, and digital engagement with green content. PCA effectively distilled 14 observed behavioral metrics into three principal components, accounting for 78% of the variance in sustainable decision-making. These components reflect digital influence, socio-demographic consciousness, and psychological affinity toward sustainability. The study contributes a novel statistical modeling framework that bridges consumer psychology with sustainability science. Its interdisciplinary approach supports SDG-9 (industry-and-innovation), SDG-12 (responsible-consumption), and SDG-13 (climate-action), while offering practical insights for marketers, digital strategists, and policymakers. By harnessing empirical evidence, the research informs ESG-aligned and circular economy marketing strategies that resonate with India’s digitally active and environmentally conscious consumer baseAbstract
How to Cite
Downloads
Similar Articles
- S. Jerinrechal, I. Antonitte Vinoline, A vendor-constrained economic production quantity model integrating scrap recovery under sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Akila L, Comparative study on Datafication and Digitization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Siddharth P. Singh, Amar B. Verma, Ankur Srivastava, Kamlesh K. Chaurasiya, Anil Kumar, Prashant K. Singh, Sindhu Singh, Design Design, structural, and electrical conduction behavior of Zr-modified BaTiO3-BiFeO3 perovskite ceramics , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Saguber Ali S Hameed, Prabakaran. J, A study and analysis of e-commerce factors influencing ecotourism online booking behavior , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ravindra K. Kushwaha, Sonia Patel, Sarfaraz Ahmad, Indian education through a G20 lens-Ensuring continuity of sustainable development , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Shapali Devi, Sadguru Prakash, Ravindra Pratap Singh, Rahul Singh, Polylactic Acid: A Bio-Based Polymer as an Emerging Substitute for Plastics , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Vinodini R, Ritha W, The economic order quantity model for sustainable green inventory considers deterioration impact on the real-time replacement and various reorder points with imperfect quality items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Mohit Kalra, Arpan Nautiyal, Krishnapal Singh, Health Assessment of Buksa Tribe: Exploring CSR Models for Indigenous Community Empowerment in Ramnagar Block, Nainital District , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- V. Infine Sinduja, P. Joesph Charles, A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.

