Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer
Published
Keywords:
Magnetic resonance imaging, Optimizer based Semantic-Aware Transformer, MRI, segmentation, Bonobo optimization algorithmDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In order to improve patients’ chances of survival and prognosis, early detection of brain tumors is essential. This task requires the physical analysis of magnetic resonance imaging (MRI) images of brain tumors. Consequently, more accurate tumor diagnosis necessitates computational methods. Shape, volume, boundaries, size, tumor identification, segmentation, and classification evaluations continue to be tough, nonetheless. Cancer features also make correct segmentation difficult, including fuzziness, complicated backgrounds, and substantial variations in size, shape, and intensity distribution. To lecture these issues, this work proposes a new Optimizer based Semantic-Aware Transformer (OSAT) for segmenting brain tumors. In addition, features based on intensity, texture, besides shape were manually retrieved from MRI data. With less memory and computational complexity, the Bonobo optimization algorithm (BOA) fine-tunes SAT, enhancing the ability of feature representation learning. Segmentation measures were among the many evaluation metrics utilized to evaluate performance in this work across the three Brain Tumor Segmentation (BraTS) challenge datasets. A more robust and generalizable solution was also obtained by improving OSAT’s performance with the addition of handcrafted features. When it comes to efficient and accurate brain tumor segmentation, this research could have major practical implications. Exploring different feature fusion methods and adding more imaging modalities to enhance the effectiveness of the projected technique are potential areas for future research.Abstract
How to Cite
Downloads
Similar Articles
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P. Rathinabhagya, J. Merline Vinotha, Fuzzy vehicle routing problem for a municipal solid waste management system with greenhouse gas emission at various disposal stages , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- R. Rita Jenifer, V. Sinthu Janita, Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kirti Gupta, Parul Goyal, Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

