Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.05Keywords:
Coronary Heart Disease (CHD) Prediction, Balanced Ensemble Learning, Preprocessing, Noise Reduction, Prediction AccuracyDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Coronary Heart Disease (CHD) is still one of the leading causes of death worldwide, which necessitates early and reliable prediction methods to support timely medical interventions. Traditional machine learning approaches frequently struggle with noisy and imbalanced datasets which leading to biased predictions and reduced diagnostic reliability. To address these limitations, this paper proposes the CleanBalance-EnsembleCHD algorithm that combines data cleaning, balancing, and ensemble learning to improve prediction accuracy. The goal is to reduce noise, handle imbalance, and combine the strengths of multiple classifiers to detect CHDs more effectively. For noise reduction, the methodology employs Edited Nearest Neighbor (ENN) and Iterative Partitioning Filter (IPF), if imbalance persists Synthetic Minority Oversampling Technique (SMOTE) used. Five classifiers namely Rotation Forest, LogitBoost, Multilayer Perceptron, Logistic Model Trees (LMT), and Random Forest were trained, with the best models chosen for weighted soft-voting ensemble integration. The experimental evaluation on a CHD dataset with an initial class imbalance (maj/min ratio: 1.038, Gini index: 0.4998) revealed significant improvements. After ENN and IPF cleaning, the dataset was reduced from 1011 to 853 balanced instances (class counts: {1.0=414, 0.0=439}). Individual classifiers performed well, with accuracies of 97.36% (Rotation Forest), 94.72% (LogitBoost), 96.04% (Multilayer Perceptron), 97.95% (LMT), and 98.53% (Random Forest). After that, the top three models chosen Random Forest, LMT, and Rotation Forest were combined into an ensemble that outperformed all individual models on the test set, with Accuracy: 99.42%, F1-score: 0.9939, and MCC: 0.9884. These findings show that CleanBalance-EnsembleCHD provides superior predictive reliability leading to noise-resistant and balanced decision-making. Finally, the proposed framework provides a powerful and interpretable solution for early CHD detection using the potential to help clinicians with risk assessment and medical decision support.Abstract
How to Cite
Downloads
Similar Articles
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Mallamma V. Reddy, Sachhidanand Sidramappa, Digitization and Recognition of Kannada Inscription Dynasty , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rimpi Manna, Anitha Arvind, Correlation between ocular surface disease index scores, tear film characteristics, and screen time usage among young adults , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Murugaraju P, A. Edward William Benjamin, Efficacy of multimedia courseware in achievement in Mathematics , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Himadri Nalinkumar Raval, Effective strategies in English language teaching: Enhancing writing proficiency among learners , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.

