Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.04Keywords:
Lean supply chain, Lead time, Automated truck loading systems, Loading and Unloading, Forklifts, Fuzzy environmentDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To analyze and justify the impact of automated truck loading system technology on minimizing lead time in warehouse loading and unloading processes for both vendor- buyer in the supply chain. A non-linear lean supply chain model is formulated for a single vendor–buyer system handling a single item, with the inclusion of freight forwarding services. The model explicitly accounts for transportation, loading, and unloading activities under two alternative loading technologies: automated truck loading systems and conventional forklift loading systems. In this framework, lead time is modeled as a function of production, loading and unloading, transportation, and in-transit durations. To reduce total lead time, automated truck loading system technology is incorporated, offering an advanced alternative to traditional forklift operations. Given the inherent uncertainty and variability in real-world supply chain environments, Single-valued Trapezoidal Neutrosophic fuzzy parameters are introduced to better capture imprecision in system parameters. To solve the formulated non-linear problem, the Lagrangian method is employed to derive the optimal solution, thereby enabling decision-makers to evaluate trade-offs between lead time reduction, efficiency, and system flexibility. The proposed model was solved using the prescribed method, and the results show that the total lead time with the incorporation of automated truck loading system technology is 5.834 days, whereas the total lead time with the forklift loading system is 10.46 days. This significant reduction in lead time demonstrates that the automated truck loading system substantially outperforms the conventional forklift loading system, thereby improving overall efficiency and responsiveness in the supply chain. From a managerial perspective, adopting automated loading technology can lead to significant improvements in supply chain efficiency, reduced operational delays, and enhanced responsiveness to customer demand.Abstract
How to Cite
Downloads
Similar Articles
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. A. Askerov, The role of improving the business environment in agriculture in ensuring the country’s food security , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Manan Pathak, Dishang Trivedi Trivedi, Field-effect limits and design parameters for hybrid HVDC – HVAC transmission line corridors , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Abhinav Prakash Yadav, Shubham Gudadhe, Sarika Kumari, Ratna Shukla, Manikant Tripathi, Awadhesh Kumar Shukla, Impact of heavy metals assessments on the physiological aspects of spinach plant (Spinacia oleracea L.) , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

