Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.04Keywords:
Lean supply chain, Lead time, Automated truck loading systems, Loading and Unloading, Forklifts, Fuzzy environmentDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To analyze and justify the impact of automated truck loading system technology on minimizing lead time in warehouse loading and unloading processes for both vendor- buyer in the supply chain. A non-linear lean supply chain model is formulated for a single vendor–buyer system handling a single item, with the inclusion of freight forwarding services. The model explicitly accounts for transportation, loading, and unloading activities under two alternative loading technologies: automated truck loading systems and conventional forklift loading systems. In this framework, lead time is modeled as a function of production, loading and unloading, transportation, and in-transit durations. To reduce total lead time, automated truck loading system technology is incorporated, offering an advanced alternative to traditional forklift operations. Given the inherent uncertainty and variability in real-world supply chain environments, Single-valued Trapezoidal Neutrosophic fuzzy parameters are introduced to better capture imprecision in system parameters. To solve the formulated non-linear problem, the Lagrangian method is employed to derive the optimal solution, thereby enabling decision-makers to evaluate trade-offs between lead time reduction, efficiency, and system flexibility. The proposed model was solved using the prescribed method, and the results show that the total lead time with the incorporation of automated truck loading system technology is 5.834 days, whereas the total lead time with the forklift loading system is 10.46 days. This significant reduction in lead time demonstrates that the automated truck loading system substantially outperforms the conventional forklift loading system, thereby improving overall efficiency and responsiveness in the supply chain. From a managerial perspective, adopting automated loading technology can lead to significant improvements in supply chain efficiency, reduced operational delays, and enhanced responsiveness to customer demand.Abstract
How to Cite
Downloads
Similar Articles
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nalini. S, Ritha. W, Sasitharan Nagapan, Economic Order Quantity under Perishability: Analytical and Iterative Approaches to Cost Minimization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Tarannum ., Anuja Pandey, Arti Rauthan, An evaluation of the impact of lean management practices on patients’ satisfaction at a small healthcare facility , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rimpi Manna, Anitha Arvind, Correlation between ocular surface disease index scores, tear film characteristics, and screen time usage among young adults , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, The green inventory model for sustainable environment that includes degrading products and backordering with integration of environmental cost , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Vijaya, D. Hema, Some properties of maximal product of two picture fuzzy soft graph , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

