Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.06Keywords:
Digital Signature Algorithms, Energy-aware security, Network Security, Internet-of-Things.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Ensuring security, integrity, and energy efficiency in Internet of Things (IoT) networks is a critical challenge due to the resource constraints of IoT devices. Traditional digital signature algorithms such as RSA, ECDSA, and EdDSA provide security but often lack energy optimization, making them inefficient for large-scale IoT deployments. To address these challenges, this research proposes an Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm (EECDSA) for universal IoT networks. EECDSA enhances conventional ECDSA by integrating three novel functional modules: Lightweight Context Sensitivity Imposer (LCSI), Adaptive Computational Complexity Overseer (ACCO), and Energy-aware ECDSA Signer (EAES). These modules dynamically adjust security parameters based on contextual sensitivity, optimize computational complexity to balance security and resource consumption, and ensure energy-efficient digital signing in IoT environments. The proposed method is evaluated using OPNET simulations, measuring both security and network performance metrics, including Accuracy, Precision, Sensitivity, Specificity, F-Score, Throughput, Latency, Jitter, Energy Consumption, Packet Delivery Ratio, and Security Levels. Experimental results demonstrate that EECDSA outperforms existing security solutions, achieving higher security resilience (99.55%), reduced energy consumption (511.6mJ), and improved network performance. These findings validate EECDSA as an efficient and scalable security mechanism for IoT ecosystems.Abstract
How to Cite
Downloads
Similar Articles
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- ABHAYA K. SINGH, IMPLICATIONS OF CLIMATE CHANGE IN THE HIMALAYAN REGION AND ITS IMPACT ON INDIAN SECURITY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Deepika, I Antonitte Vinoline, Optimization of an Advanced Integrated Inventory Model Considering Shortages and Deterioration across Varying Demand Functions , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rekha Raghavendra, Shobha Gowda, Jissy Thomas, Fingerprint doorlock system using Arduino uno , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper

