Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.06Keywords:
Digital Signature Algorithms, Energy-aware security, Network Security, Internet-of-Things.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Ensuring security, integrity, and energy efficiency in Internet of Things (IoT) networks is a critical challenge due to the resource constraints of IoT devices. Traditional digital signature algorithms such as RSA, ECDSA, and EdDSA provide security but often lack energy optimization, making them inefficient for large-scale IoT deployments. To address these challenges, this research proposes an Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm (EECDSA) for universal IoT networks. EECDSA enhances conventional ECDSA by integrating three novel functional modules: Lightweight Context Sensitivity Imposer (LCSI), Adaptive Computational Complexity Overseer (ACCO), and Energy-aware ECDSA Signer (EAES). These modules dynamically adjust security parameters based on contextual sensitivity, optimize computational complexity to balance security and resource consumption, and ensure energy-efficient digital signing in IoT environments. The proposed method is evaluated using OPNET simulations, measuring both security and network performance metrics, including Accuracy, Precision, Sensitivity, Specificity, F-Score, Throughput, Latency, Jitter, Energy Consumption, Packet Delivery Ratio, and Security Levels. Experimental results demonstrate that EECDSA outperforms existing security solutions, achieving higher security resilience (99.55%), reduced energy consumption (511.6mJ), and improved network performance. These findings validate EECDSA as an efficient and scalable security mechanism for IoT ecosystems.Abstract
How to Cite
Downloads
Similar Articles
- Surender Singh, Deep Lal, Rachna Thakur, Suchitra Devi, Socio-economic Compulsions on Climate Change and Energy Security of India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bayelign A. Zelalem, Ayalew A. Abebe, Evaluating supply chain management practice among micro and small manufacturing enterprise in southwest, Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Enhanced LSTM for heart disease prediction in IoT-enabled smart healthcare systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- I.Bhuvaneshwarri, M. N. Sudha, An implementation of secure storage using blockchain technology on cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. A. Askerov, The role of improving the business environment in agriculture in ensuring the country’s food security , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper

