Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.07Keywords:
Cybersecurity, machine learning, deep learningDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of digital infrastructures and the increasing sophistication of cyber-attacks necessitate the development of intelligent, adaptive, and real-time defense mechanisms. Traditional signature-based intrusion detection systems often fail to detect zero-day exploits and evolving attack patterns, making anomaly detection a critical component of modern cybersecurity. This research proposes an Adaptive Machine Learning Framework capable of detecting anomalies in real time by integrating streaming data analysis, dynamic feature selection, and continuous model optimization. The framework leverages a hybrid learning paradigm that combines supervised and unsupervised techniques—specifically, ensemble-based classification for known threats and clustering-based outlier detection for unknown patterns. A key innovation lies in the adaptive retraining module, which incrementally updates the model parameters in response to evolving network behaviors and attack signatures without requiring full retraining, thereby reducing computational overhead. The system architecture incorporates data preprocessing, feature engineering, adaptive model selection, and decision fusion layers to ensure high detection accuracy and minimal false positives. Real-world network traffic datasets, such as UNSW-NB15 and CIC-IDS2017, were used to validate the framework’s effectiveness. Experimental results demonstrate an average detection accuracy exceeding 98% with a significant improvement in detection latency compared to baseline methods. This approach shows strong potential for deployment in live cybersecurity environments, offering robust defense against both known and unknown threats. The proposed framework can be extended to support multi-modal data sources, enabling its integration into large-scale security information and event management (SIEM) systems for proactive threat mitigation.Abstract
How to Cite
Downloads
Similar Articles
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- D. Selvaraj, A study on sustainable technology development of fintech 5.0 in Indian industries , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- N. Yogalakshmi, Awareness on environmental issues and sustainable practices among college students - with special reference to Chennai city region , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Partha Majumdar, Empowering skill development through generative AI bridging gaps for a sustainable future , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.

