Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.07Keywords:
Cybersecurity, machine learning, deep learningDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The exponential growth of digital infrastructures and the increasing sophistication of cyber-attacks necessitate the development of intelligent, adaptive, and real-time defense mechanisms. Traditional signature-based intrusion detection systems often fail to detect zero-day exploits and evolving attack patterns, making anomaly detection a critical component of modern cybersecurity. This research proposes an Adaptive Machine Learning Framework capable of detecting anomalies in real time by integrating streaming data analysis, dynamic feature selection, and continuous model optimization. The framework leverages a hybrid learning paradigm that combines supervised and unsupervised techniques—specifically, ensemble-based classification for known threats and clustering-based outlier detection for unknown patterns. A key innovation lies in the adaptive retraining module, which incrementally updates the model parameters in response to evolving network behaviors and attack signatures without requiring full retraining, thereby reducing computational overhead. The system architecture incorporates data preprocessing, feature engineering, adaptive model selection, and decision fusion layers to ensure high detection accuracy and minimal false positives. Real-world network traffic datasets, such as UNSW-NB15 and CIC-IDS2017, were used to validate the framework’s effectiveness. Experimental results demonstrate an average detection accuracy exceeding 98% with a significant improvement in detection latency compared to baseline methods. This approach shows strong potential for deployment in live cybersecurity environments, offering robust defense against both known and unknown threats. The proposed framework can be extended to support multi-modal data sources, enabling its integration into large-scale security information and event management (SIEM) systems for proactive threat mitigation.Abstract
How to Cite
Downloads
Similar Articles
- E. J. David Prabahar, J. Manalan, J. Franklin, A literature review on the information literacy competency among scholars of co-education colleges and women’s colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anilkumar K. Varsat, Sociolinguistics competence development in the ESL classroom: Challenges and opportunities , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- NITHYA R, shruthi D, Sindhuja S, Sneha S, Challenges encountered by health care professionals in monitoring adverse events due to medical devices: A review , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shivali Kundan, Neha Verma, Zahid Nabi, Dinesh Kumar, Satellite radiance assimilation using the 3D-var technique for the heavy rainfall over the Indian region , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.

