Comparative accuracy of IOL power calculation formulas in nanophthalmic eyes undergoing cataract surgery
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.12Keywords:
Nanophthalmos, IOL power calculation, short axial length, cataract surgery, Accuracy of IOL PowerDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aim: To compare the predictive accuracy of three widely used IOL power calculation formulas—Hoffer Q, SRK/T, and SRK II—in adult patients with nanophthalmos undergoing cataract surgery or clear lens extraction. Methods: This retrospective observational study included 45 eyes with axial lengths ≤ 20.5 mm diagnosed with nanophthalmos. All patients underwent uncomplicated cataract surgery or clear lens extraction with posterior chamber IOL implantation. Preoperative biometry was performed using ZEISS IOL Master 700 or NANO AXIS A-scan. IOL power was calculated using Hoffer Q, SRK/T, and SRK II formulas. Postoperative spherical equivalent was recorded at one month, and prediction error was calculated as the difference between actual and predicted refraction. Mean absolute error (MAE) and percentage of eyes within ±0.25 D, ±0.50 D, ±1.00 D, and ±2.00 D were assessed. Statistical analysis included one-sample t-tests and descriptive statistics using SPSS version 26. Results: The Hoffer Q formula showed the lowest mean absolute prediction error (−0.44 ± 0.30 D), followed by SRK/T (+0.68 ± 0.73 D), while SRK II exhibited the highest error (+3.28 ± 0.52 D). The Hoffer Q formula demonstrated superior accuracy, with 75.6% of eyes within ±0.50 D and 93.3% within ±1.00 D of the target refraction. SRK II showed a statistically significant hyperopic shift (p < 0.001), whereas Hoffer Q and SRK/T did not show statistically significant differences from zero prediction error. Conclusion: Among the three formulas studied, the Hoffer Q formula provided the most accurate IOL power prediction in nanophthalmic eyes, with the lowest refractive error and highest consistency. These findings support the use of Hoffer Q in managing cataract patients with nanophthalmos and highlight the need for further evaluation of advanced formulas in this subgroup.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Akshay J., G. Mahesh Kumar, B. H. Manjunath, Optimizing durability of the thin white topping applying Taguchi method using desirability function , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Chandra Bhushan Tiwary, Ashok Kumar Singh, WATER QUALITY AND LIFE-HISTORY PARAMETERS OF DAPHNIA CARINATA (DAPHNIDAE : CLADOCERA) UNDER LABORATORY CONDITIONS , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Rohit Mittal, Devinder Kumar, Harmel Singh Chahal, Antioxidant and Free Radical Scavenging Activity of Methanolic Extract of (Hordeum vulgare) Barley , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.

