Adoptive bancassurance models transforming patronization among the insured
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-2.09Keywords:
Adoptive model, Bancassurance, Patronization, Insurance services, Financial inclusion, DigitalizationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Adoptive bancassurance model is an imperative and flexible developmental model focusing on the concept of a strategic approach that banks adopt in contradiction with other models where control remains rigid. The primary objective pertaining to the study is to determine all reliable characteristics that emerge from the adoption model, which modifies user patronization behaviours. A descriptive study design and a judgemental sampling method are utilized to study the respondents in the Metropolitan area of Chennai City. A Self-designed structured questionnaire was employed to collect data from a sample size of 343, carried out between March-July 2024. Using IBM SPSS and AMOS, the gathered data is analysed using frequency analysis, model fit index, and structural equation modelling. The study asserted that the six adopting bancassurance model indices of Credibility, Personalization, Financial inclusion, Digitalization, User Interface, and Consumer Literacy, had a beneficial impact on insureds' patronage. The adoptive model's user interface's unexplored sense of flexibility goes beyond its basic features. The effects of the insured perspective on customer satisfaction, financial inclusion, and market competitiveness guide the industry toward regulated insurance product simplification and guarantee penetration. Adoptive bancassurance models effectively improve client access to insurance and expedite service delivery while promoting consistency and new product development for client retention and growth. The flexibility of adoptive models provides access to insurance through banking channels, endorsing financial inclusion and literacy, and ensuring socioeconomic stability, especially for those living in underprivileged areas.Abstract
How to Cite
Downloads
Similar Articles
- Rohit Chettri, Prem Kumar N, Renoprotective effect of flavonoids in type-2 diabetes mediated-nephropathy in Wistar rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Royan Chhetri, Prem Kumar N, Polyphenolic compounds as novel reno-modulatory agents in the management of diabetic nephropathy in Wistar rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Theophilus Deenadayal, Tarun Jain, Floristic composition in Paramananda Devara Gudda A sacred grove at Lingadahalli Village Devadurga Taluk Raichur District Karnataka, India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vipul Sundavadara, Riddhi SanghvI, Behavioral finance: A systematic literature review , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Sapna Pathakji, Shilpi Sharma, Transgender Persons (Protection of Rights) Act, 2019: A critical evaluation of rights access and implementation for the transgender community in India , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Jayaganesh Jagannathan, Dr. Agrawal Rajesh K, Dr. Neelam Labhade-Kumar, Ravi Rastogi, Manu Vasudevan Unni, K. K. Baseer, Developing interpretable models and techniques for explainable AI in decision-making , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 22 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Anli Suresh, Sandhiya M., Investment model on the causation of inclining attributes towards bank investment options in the investor’s portfolio , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper

