Static deformation of a two-phase medium consisting of a rigid boundary elastic layer and an isotropic elastic half-space induced by a very long tensile fault
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.13Keywords:
Tensile fault; Welded contact; Epicentral distance; Stresses; Displacement.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An analytical model is proposed to determine the static response of a multi-layered medium comprising of an underlying isotropic (ISO) elastic half-space that is in welded contact with an isotropic (ISO) elastic layer of uniform thickness H with a rigid boundary, induced by a tensile dislocation embedded in the layer. The integral expressions for stress fields are obtained by using the airy stress function. These integrals are calculated approximately, using Sneddon’s approach, by substituting the terms under the integral sign with a finite sum of exponential expressions. It is studied numerically and graphically how stresses vary with the change in the epicentral distance for different source locations embedded in the layer. The effect of the rigidity ratio is also analysed on the stress field. To examine the impact of the internal boundary, the stress fields in the layered and uniform half-spaces are compared graphically.Abstract
How to Cite
Downloads