Static deformation of a two-phase medium consisting of a rigid boundary elastic layer and an isotropic elastic half-space induced by a very long tensile fault
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.13Keywords:
Tensile fault; Welded contact; Epicentral distance; Stresses; Displacement.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An analytical model is proposed to determine the static response of a multi-layered medium comprising of an underlying isotropic (ISO) elastic half-space that is in welded contact with an isotropic (ISO) elastic layer of uniform thickness H with a rigid boundary, induced by a tensile dislocation embedded in the layer. The integral expressions for stress fields are obtained by using the airy stress function. These integrals are calculated approximately, using Sneddon’s approach, by substituting the terms under the integral sign with a finite sum of exponential expressions. It is studied numerically and graphically how stresses vary with the change in the epicentral distance for different source locations embedded in the layer. The effect of the rigidity ratio is also analysed on the stress field. To examine the impact of the internal boundary, the stress fields in the layered and uniform half-spaces are compared graphically.Abstract
How to Cite
Downloads
Similar Articles
- Heena Gulia, Sunder Singh Arya, Neha Yadav, Ajay Kumar, Monika Janaagal, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Yadav, Sudershan Singh, Reetu Verma, Strategies for adaptations and mitigation of abiotic stresses in crops: A review , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Hariini Chandramohan, Sethu Gunasekaran, Comparative analysis on the photocatalytic activity of titania and silica nanoparticles using dye discoloration and contact angle test , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- N Archana, R Aravind Babu, Fault-tolerant reconfigurable second-life battery system using cascaded DC- DC converter , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ravi Chaware, Sajid Anwar, Sunil Prayagi, Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Indrajeet Mishra, Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadyl ion , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

