
Abstract
An analytical model is proposed to determine the static response of a multi-layered medium comprising of an underlying isotropic (ISO) 
elastic half-space that is in welded contact with an isotropic (ISO) elastic layer of uniform thickness H with a rigid boundary, induced 
by a tensile dislocation embedded in the layer. The integral expressions for stress fields are obtained by using the airy stress function. 
These integrals are calculated approximately, using Sneddon’s approach, by substituting the terms under the integral sign with a finite 
sum of exponential expressions. It is studied numerically and graphically how stresses vary with the change in the epicentral distance 
for different source locations embedded in the layer. The effect of the rigidity ratio is also analysed on the stress field. To examine the 
impact of the internal boundary, the stress fields in the layered and uniform half-spaces are compared graphically.
Keywords: Tensile fault, Welded contact, Epicentral distance, Stresses, Displacement.
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Introduction
Seismology is the scientific discipline that investigates the 
frequency of earthquakes and the propagation of seismic 
waves within the Earth. Static dislocation earth models are 
employed to analyze the deformation fields of the medium 
caused by earthquake faults. The tensile fault representation 
model is crucial for geophysical applications such as 
modeling deformation fields caused by dyke injection in 
volcanic zones, mine collapse, and fluid-driven cracks. 

Numerous researchers have extensively studied the 
deformation of different earth models caused by 2D 

sources. Inspired by the revolutionary study conducted by 
(Steketee, 1958a; Steketee, 1958b) on the application of the 
elastic theory of dislocations to analyze the deformation 
caused by a strike-slip fault with uniform  slip in a three-
dimensional model (Maruyama, 1964) derived the equations 
for the displacement and stress fields in a semi-infinite 
Poisson solid resulting from vertical and horizontal tensile 
faults. (Maruyama, 1966) gave detailed expressions for the 
Green’s functions, displacement, and stress fields for a two-
dimensional Poissonian media. In a multi-layered half-space, 
(Savage, 1998) calculated the displacement field as a Fourier 
integral produced by an edge dislocation. In their study, 
Singh and Garg (1986) examined the plane strain problem 
to analyze the representation of 2-D seismic sources in an 
unbounded medium. They derived the airy stress function 
and determined several source coefficients. (Rani et al., 
1991) considered the problem of a uniform half-space 
with traction-free boundary conditions at the interface 
due to 2-D buried sources. The integrals are analytically 
evaluated to derive the expressions for the airy stress 
function, displacement field, and stress field. In their work, 
(Singh and Rani, 1991) designed mathematical equations to 
describe the deformation field caused by two-dimensional 
seismic sources in a two-phase model. (Rani and Singh, 
1992) studied the problem of static deformation to derive 
the expressions for deformation fields of a uniform half-
space with a traction-free surface caused by a dip-slip fault. 
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Following these results, (Singh and Singh, 2000) studied the 
corresponding problem for a vertical tensile fault. (Singh 
et al., 1997) studied analytically the plane strain problem 
of a two-phase model comprising of an overlying elastic 
layer with a traction-free surface and which is in welded 
contact with an ISO half-space caused by a very long dip-
slip dislocation. Following these results, (Singh and Singh, 
2004) solved the corresponding problem for tensile fault and 
analyzed the variation of the vertical and horizontal surface 
displacement for different source locations with epicentral 
distance from the fault. Using Sneddon’s method, the 
integrals were calculated approximately by substituting the 
terms under the integral sign with a finite sum of exponential 
expressions. (Rani and Singh, 2007) analytically discussed 
the plane strain problem of two welded half-spaces caused 
by 2-D seismic sources. Standard integral transform tables 
were used to solve the expressions for the deformation 
fields. The drained and undrained cases for pore pressure, 
displacements, and stresses were also studied numerically. 
(Pakhare et al., 2021) analytically and numerically investigate 
the flexure of isotropic plates using the novel first-order 
shear deformation theory. (Madan and Kumari, 2022) 
studied the plane-strain deformation for stresses and 
displacements for two imperfectly joined half-spaces 
induced by vertical tensile fault. (Chugh et al., 2011) derived 
mathematical equations that describe the deformation of a 
homogeneous, orthotropic, elastic layer at any point where 
it interfaces with a base and this deformation is caused by a 
non-uniform discontinuity (slip) along a very long strike-slip 
fault located within the orthotropic elastic layer. Four non-
uniform slip profiles, namely linear, parabolic, and cubic, are 
taken into account when considering the fault. Using the 
eigenvalue approach, (Madan and Gaba, 2016) calculated 
the displacement and stresses at every location in an infinite 
irregular orthotropic elastic material induced by a normal 
line load. They have considered the irregularities of parabolic 
and rectangular. (Manna and Sen, 2017) examined two 
inclined, interacting, strike-slip, faults that are buried under a 
viscoelastic layer. These faults are located on and in welded 
contact with a viscoelastic half-space, which represents 
the lithosphere-asthenosphere system. (Kundu et al., 2021) 
considered an analytical study for displacement, stress, and 
strain due to creeping, buried, finite strike-slip fault inclined 
to the vertical at an arbitrary angle. The fault is situated in 
an elastic layer over an elastic half-space representing the 
lithosphere-asthenosphere system. (Kundu and Sarkar, 
2021) studied the deformation of an elastic layer that is on 
top of an elastic half-space. This deformation is induced 
by a finite, buried, inclined, locked strike-slip fault. (Kumari 
and Madan, 2022) incorporated into their mathematical 
model the stresses induced by vertical dip-slip faults that 
are embedded in an isotropic half-space perfectly joined 
with an orthotropic half-space. (Savita et al., 2022) proposed 

an analytical model to describe the static deformation of 
a two-dimensional system. This system consists of a layer 
of uniform thickness made of a homogeneous isotropic 
elastic material put on top of an irregular isotropic elastic 
half-space. The deformation is caused by the movement of 
a long tensile fault. (Soni and Rani, 2023) obtained a detailed 
solution for the plane strain deformation of a two-layer 
model consisting of a homogeneous, elastically isotropic 
substratum indued by two-dimensional faulting located in 
the isotropic stratum. (Sangeeta et al., 2023) derived static 
deformation caused by a tensile fault embedded in an 
isotropic half-space perfectly joined with an orthotropic 
half-space. Using the fourier transform method, (Rani and 
Rani, 2024) examined the antiplane deformation of a two-
layered elastic medium model induced by an inclined long 
strike-slip fault

Our main aim of the paper is to mathematically analyze 
the plane strain problem for a multi-layered model. This 
multi-layered model consists of a rigid boundary layer 
of thickness H lying over an ISO half-space caused by a 
tensile dislocation embedded in the overlying layer. The 
overlying layer is assumed to be with rigid boundary along 
z = 0 and the interface of both the media along the plane 
z = H are to be taken in welded contact. The procedure 
employed by (Singh et al., 1997) is used to obtain the 
stress field due to horizontal tensile fault and vertical 
tensile fault. This procedure makes use of various forward 
Laplace transforms and then inverse Laplace transforms. 
The stresses caused by both horizontal tensile fault 
and vertical tensile are numerically evaluated for three 
different source depths. The stress fields for layered and 
uniform half-spaces are compared numerically as well as 
graphically.

Materials and Methods
Let the cartesian coordinate system be denoted by 

 with the -axis vertically downwards. 
We examine a multi-layered model comprising of an ISO 
elastic layer of uniform thickness  lying over an ISO elastic 
half-space, which are to be taken in welded contact along the 
plane . A 2-D approximation is considered in which the 
displacement components  are independent of 

 so that . In this paper, the sources considered 
are infinitely thin strips with opposite Burgers vectors and 
both are placed at an infinitesimal distance .

For a line dislocation, the airy stress function , given 
by (Singh and Garg, 1986) as:

  (1)
where, , , ,  (source coefficients) are independent 

of .
The overlying layer is considered to be medium I and the 

underlying half-space is considered to be medium II. For a 
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line dislocation passing through the point  of the 
overlying layer (medium I), the airy stress function is given 
by (Singh and Garg, 1986; Rani and Singh, 2007; Sangeeta 
et al., 2023)

 (2)
and the airy stress function for medium II may be of 

the form 

  (3)
where the airy stress function  is given by Eq. (1) and 

using the boundary conditions, the unknowns , , etc. 
are to be determined in terms of the source coefficients. 

The expressions for stresses and displacements, using 
the airy stress function, are given by (Sokolnikoff and Specht, 
1956)

, ,    (4)

  (5)

  (6)

    (a)   (b)

Figure 1: Illustrates the geometric characteristics of a line dislocation 
with finite widths ds and infinite length and the dislocation is 
embedded in a layer situated above a half-space at the point (0,0,h). 

where   (7)

   (8)

 denotes the Poisson’s ratio. In Eqs. (4)-(8),  and 
 are used for medium I and medium II, respectively. The 

Figure 1 represents two types of faults: (a) a horizontal tensile 
fault and (b) a vertical tensile fault (Singh and Singh, 2004)

Using Eqs. (1)-(3) in Eqs. (4)-(8), for medium I and medium 
II, the expressions for stresses and displacements are given by 

  (9)

  (10)

       (11)

   (12)

   (13)

   (14)

   (15)

   (16)
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  (17)

  (18)

Since, we have assumed that the overlying layer  is with rigid boundary and the half-space and layer are to be 
taken in welded contact along the plane . Therefore, the boundary conditions are 

 at 

 ,  at 

,  at           (19)

Let , , ,  be the values of source coefficients , , ,  valid for . Then, using Eq. (10) and Eq. (11) and 
Eqs. (13)-(18) in Eq. (11), we get two sets of system of equations, one is in , , , , ,  and the other is in , , ,  

, ,  and these systems of equations in matrix form can be written as 

   (20)

and

    (21)

Where  is the 6 6 matrix given by 

 

Now using Cramer’s rule, solving the system of Eqs. (20) and (21), we obtain

  (22)

  (23)
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  (24)

  (25)

  (26)

   (27)

  (28)

   (29)

   (30)

  (31)

  (32)

  (33)

where    (34)

, , , ,

,    (35)
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The values defined for , , ,  in Eq. (35) are given by (Ben-Menahem and Singh, 1986).
On putting  and then the values of the unknowns ,  etc. From Eqs. (22)-(33) into Eq. (10) and Eq. (11), the 

expressions for stresses in the overlying layer are given by 

  (36)

  (37)

Tensile Fault 
Two tensile dislocations are considered, one is a horizontal tensile fault and the other is a vertical tensile fault with dislocations 
in the z-direction and y-direction respectively. 

Horizontal tensile fault 
The source coefficients are given by (Singh and Rani, 1991)

, , where  is the magnitude of the displacement discontinuity

and  is the infinitesimal distance between two line dislocations. 
On putting the values of the source coefficients in the expressions for stress field for the overlying layer, we obtain 

  (38)

  (39)

Vertical tensile fault 
The source coefficients are given by (Singh and Rani, 1991)

, , 

On putting the values of source coefficients in the expressions for stress field for the overlying layer, we obtain 

  (40)

  (41)
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Uniform Half-Space
For a uniform half-space, the expressions of the stress 
field can be obtained by taking the limit  in the 
expressions of the stress field of the layer overlying a uniform 
half-space. Consequently, for a horizontal tensile fault, the 
expressions for the stress field are given by

  (42)

  (43)

Integrating Eq. (42) and Eq. (43), we obtain 

  (44)

  (45)

Similarly, for a vertical tensile fault, from Eq. (40) and Eq. 
(41) we obtain 

  (46)

  (47)

Integrating Eq. (46) and Eq. (47), we obtain 

  (48)

   (49)

Results
The integral expressions appearing in Eqs. (38)-(41) can be 
written in the form 

   (50)

where, ;

  (51)

The factor  involved in the integrand of the above 
integrals renders integration by analytical methods difficult. 
However, (Sneddon, 1951) advised an approximation by 
which this difficulty is overcome and the idea was that the 

factor  can be substituted by a sum of exponential terms in 
order to make the error as small as we looked for. 

From Eq. (34) and Eq. (51), we have 

   (52)

where, , ,  

Applying binomial expansion in Eq. (52), we have 

(53)
Following, (Ben-Menahem and Gillon, 1970), we take 

approximation

(54)
where, ,   (55)

and ,  areto be taken in such a manner so as 
to make a best fit in the least-square sense. Putting ,  
in Eq. (52) and Eq. (54) and equating both equations we 
obtained the value of . By the usage of approximation 
(54), a linear combination of known integrals, of the form 
(Gradshteyn et al., 1988) is used to approximate the integrals 
appearing in Eq. (50).

(56)

,

  (57)

In Eq. (54) for different values of n, to obtain best 
approximation for , the least-square method is used by 
(Ben-Menahem and Gillon, 1970) and established that n = 2 
yields satisfactory results for realistic earth models. So that, 
the approximation used is given by 

 

(58)
In Eqs. (38)-(42), using the approximation for  we have 

found that the expressions for stresses can be written 
as a linear combination of  and  for 

.
For numerical computations, the values of the parameters 

, , , ,  are taken from (Ben-Menahem and Gillon, 
1970) for the continental earth model and are given in 
Table 1.

The following dimensionless quantities are defined for 
numerical computations.

,   (59)

, 
 
  (60)

where is the source depth

Discussion 
We numerically study the variation of the normal and shear 
stresses with the epicentral distance due to horizontal and 
vertical tensile faults. We have used MATHEMATICA Wolfram 
(1991) software for symbolic and numerical computations. 

Table 1: Parameters values

1.76 2 0.27 0.27 0.43871 3.31986

2.22 2 0.27 0.27 0.70360 3.22888

5.00 2 0.23 0.30 1.17574 2.92896
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Figure 2: Variation of the dimensionless shear stress with the 
dimensionless distance from the fault due to a horizontal tensile 

fault for  and h = 0.10H, 0.75H, 0.90H

Figure 3: Variation of the dimensionless normal stress with the 
dimensionless distance from the fault due to a horizontal tensile 

fault for  and h = 0.10H, 0.75H, 0.90H

Figure 4: Variation of the dimensionless shear stress with the 
dimensionless distance from the fault due to a vertical tensile fault 

for  and h = 0.10H, 0.75H, 0.90H

Figure 5: Variation of the dimensionless normal stress with the 
dimensionless distance from the fault due to a vertical tensile fault 

for  and h = 0.10H, 0.75H, 0.90H

Figure 6: Variation of the dimensionless shear stress due to a 
horizontal tensile fault when the line source is situated at h = 0.90H 

and , , 5.00

Figure 7: Variation of the dimensionless normal stress due to a 
horizontal tensile fault when the line source is situated at h = 0.90H 

and 

Figure 8: Variation of the dimensionless shear stress due to a vertical 
tensile fault when the line source is situated at h = 0.90H and 

Figure 9: Variation of the dimensionless normal stress due to a 
vertical tensile fault when the line source is situated at h = 0.90H and 
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Figure 10: Variation of shear stress due to horizontal and vertical 
tensile fault for h = 0.10H and 

Figure 11: Variation of normal stress due to horizontal and vertical 
tensile fault for h = 0.10H and 

For three different values of the rigidity contrast, we have 
also studied the effect of source locations.

Figures 2 and 3 demonstrate the variation of the 
dimensionless shear  and normal stresses, 
respectively, at the rigid surface of an elastic layer lying 
over an elastic half-space due to a horizontal tensile fault 
as the dimensionless distance changes for the rigidity 
ratio  (continental earth model) and  

. The value of shear stress 
in Figure 2 is  at  and its sign turns from positive 
to negative. Moreover, its value tends to zero as  tends 
to infinity. We may observe that the magnitude of shear 
stress likewise increases with the source depth. As shown 
in Figure 3 the normal stress changes from a negative 
to a positive value, and tends to zero as tends to infinity. 
It is also clear that the magnitude of normal stress increases 
initially with increasing source depth but then decreases as 
the source depth increases. 

Figures 4 and 5 illustrate the variation of the dimensionless 
shear  and normal stresses, respectively, at the 
surface due to a vertical tensile fault as the dimensionless 
distance changes for the rigidity ratio  
(continental earth model) and . 
Figure 4 shows that the shear stress  changes its sign 
from negative to positive and its value is  at . As the 
source depth increases magnitude of shear stress increases 

for some extent and after that its magnitude decreases with 
the source depth. For large value of fault depth  
stress field is much more influenced. From Figure 5, we can 
examine that as the fault depth increases, the magnitude 
of the normal stress initially decreases and subsequently 
increases. The magnitude of both stresses approaches  
as the distance from the fault approaches infinity.

The influence of the rigidity ratio on the shear stress 
 and normal stress with the distance from 

the fault is exhibited in Figures 6 and 7, respectively, for 
the source depth  due to a horizontal tensile 
fault. Figure 7 displays that for all values of  shear stress 
vanishes at the origin. We investigate that as epicentral 
distance increases magnitude of shear stress and normal 
stress increases with the increase in the value of . For 
large value  of source depth the effect of rigidity 
is more influential for . But for all values of , as 
epicentral distance approaches to infinity magnitude of 
both components of stress approaches to zero. 

Figures 8 and 9 depict variation of the shear  and 
normal  stresses, respectively, with the dimensionless 
horizontal distance due to a vertical tensile fault for 

 and display the effect of the rigidity ratio on 
the stress field. We can analyse that the rigidity ratio has 
more influence in case of normal stress while its effect is less 
experienced in case of shear stress. The shear stress  
for  and both the stresses tends to  as . Figure 
9 investigates that the value of the normal stress  
decreases as the rigidity ratio  increases.

Figure 10 represents the variation in shear stress  
with the distance due to a horizontal and vertical tensile 
fault for  and . For layered half-space, 
the variation of the shear stress is shown by continuous lines, 
on the other hand dashed lines depict the variation in the 
stress field for a uniform half-space. The shear stress  
changes its sign from positive to negative for both uniform 
and layered half-spaces in case of horizontal tensile fault, 
while its sign changes from negative to positive in case of 
vertical tensile fault for both uniform and layered elastic 
half-spaces. It can also be seen that effect of the underlying 
medium is significant near the interface while near the rigid 
surface, its effect is insignificant.

The effect of underlying half-space is observed in Figure 11  
on the normal stress  with the distance from the fault 
due to a horizontal and vertical tensile fault for  
and . For layered half-space, continuous lines 
reflect the variation of the normal stress, whereas dashed 
lines show variation of stress field for uniform half-space. 
In case of layered half, near the origin normal stress  
is positive in case of vertical tensile fault, while its value is 
more negative in case of horizontal tensile fault. In all cases 
normal stress  approaches to  as the distance from 
the fault approaches to .
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Conclusion
The 2-D plane strain static solution for multi-layered half-
space composed of a rigid boundary elastic layer in welded 
contact with an elastic half-space has been obtained in this 
investigation.

In the case of a horizontal tensile fault, the magnitude of 
shear stress and normal stress increases with the increasing 
value of the source depth.

As the rigidity ratio increases, the magnitude of shear 
and normal stresses increases for the horizontal tensile fault. 

In the case of a vertical tensile fault, the normal stress 
is significantly more influenced by the source depth and 
rigidity ratio, and its magnitude diminishes as the source 
depth and rigidity ratio increase.
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