Isolation, Characterization and Exploring the Biotechnological Potential of Halophiles
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.05Keywords:
Halophiles, Extremophiles, Isolation Techniques, Characterization, Salt-Tolerant Microorganisms, Biotechnological Applications, Enzyme Production.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Soil salinity is a major challenge for agriculture worldwide, making it difficult for crops to grow and reducing overall productivity. On the other hand, halophiles are a type of microbe that has evolved to live in very salty conditions. Soda and salty lakes are rich habitats for salt-loving microorganisms, which may be essential for crop improvement in salty soils. In addition to their usefulness in agriculture, halophiles have industrial value due to the significant enzymes they create, including as amylase, protease, and lipase.Abstract
In this study, researchers collected microbial samples from three highly saline environments: the Sambhar salt pan (27°58′N 75°55′E) and Sambhar Lake (26.9261°N 75.0962°E) in Rajasthan, as well as the Halar salt pan in Jamnagar, Gujarat (22°47′N 70°05′E). These microorganisms were tested for their ability to produce useful enzymes and support plant growth, potentially helping crops withstand salt stress. Interestingly, some of the isolates were found to produce polyhydroxybutyrate (PHB) granules—an indicator of their ability to generate bioplastics, a promising sustainable material.
To better understand these microbes, scientists conducted antibiotic sensitivity tests and used 16S rDNA amplification with specialized primers for haloarchaea. Based on initial findings, two isolates (SSP and SL) were classified as part of the Haloarchaea group, while another (JSP) belonged to the Eubacteria group. However, further genetic analysis, including genome sequencing and phylogenetic studies, will be needed for precise classification.
Researchers also studied pigmented isolates, focusing on their carotenoid content due to the strong antioxidant properties of these compounds. The antioxidant activity was measured using DPPH radical scavenging assays, with ascorbic acid as a reference. Given their ability to combat oxidative stress caused by reactive oxygen species (ROS), these microorganisms could have potential applications in medical research as well.
Overall, this study highlights the incredible versatility of halophilic archaea and bacteria. Their potential goes far beyond agriculture—they could be used for bioremediation, biofertilizers, biofuels, microbial fuel cells, halocin production, biofilm formation, and biosurfactants. This makes them valuable not just for improving soil health and crop yields but also for advancing sustainable industrial processes.
How to Cite
Downloads
Similar Articles
- Pankaj Kumar, Ambrish Pandey, Rajendrakumar Anayath, Comparative study of print quality attributes on bio-based biodegradable plastic using flexography and gravure printing process , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Urmi Chakravorty, Social media’s detrimental outcomes on personal relationships , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sonal R. Vasant, Synthesis and characterization of pure and magnesium ion doped CPPD nanoparticles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ravi Kumar P, C. Gowri Shankar, Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Krutuja S. Gadgil, Prabodh Khampariya, Shashikant M. Bakre, Investigation of power quality problems and harmonic exclusion in the power system using frequency estimation techniques , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- P.L. Parmar, P.M George, Effect of process parameters on concentricity in CNC turning operation using design of experiment , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Aruljothi Rajasekaran, Jemima Priyadarsini R., ECDS: Enhanced Cloud Data Security Technique to Protect Data Being Stored in Cloud Infrastructure , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Mohanapriya Jayapal, Hema Jagadeesan, Plant-microbe-dye interaction during rhizoremediation , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.

