Clustering of cancer text documents in the medical field using machine learning heuristics
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.06Keywords:
Machine learning, soft computing paradigm, cancer text documents, redundancy reductionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The data clustering over medical text documents plays a major role in extracting relevant information from the documents. However, most of the methods fails in finding the accurate solution on finding the relevant cancer type due to the presence of redundant data items. It is hence necessary to develop a clustering framework that strictly eliminates the redundant data items. In this paper, we present a clustering framework that tends to accurately cluster the cancer text documents to predict what type of cancer is present in a patient. A large database is tested and clustering using the machine learning model. The clustering framework consists of pre-processing the text documents, feature extraction, feature selection and clustering. The clustering using multi-support vector machine enables optimal clustering of text documents. The cancer datasets is used to validate the models over various medline cancer documents dataset. The experimental validation shows improved clustering of documents using the proposed models than other methods.Abstract
How to Cite
Downloads
Similar Articles
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Jabeen, AR Mohamed Shanavas, Bradley Terry Brownboost and Lemke flower pollinated resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

