Clustering of cancer text documents in the medical field using machine learning heuristics
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.06Keywords:
Machine learning, soft computing paradigm, cancer text documents, redundancy reductionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The data clustering over medical text documents plays a major role in extracting relevant information from the documents. However, most of the methods fails in finding the accurate solution on finding the relevant cancer type due to the presence of redundant data items. It is hence necessary to develop a clustering framework that strictly eliminates the redundant data items. In this paper, we present a clustering framework that tends to accurately cluster the cancer text documents to predict what type of cancer is present in a patient. A large database is tested and clustering using the machine learning model. The clustering framework consists of pre-processing the text documents, feature extraction, feature selection and clustering. The clustering using multi-support vector machine enables optimal clustering of text documents. The cancer datasets is used to validate the models over various medline cancer documents dataset. The experimental validation shows improved clustering of documents using the proposed models than other methods.Abstract
How to Cite
Downloads
Similar Articles
- Gautam Nayak, Parthivkumar Patel, Developing speaking skills through task-based learning in English as a foreign language classroom , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kiruthiga R., Bharathidasan R., Thiruneelakandan G., Molecular docking insights into the anticancer potential of bioactive compounds from Streptomyces coelicolor KR23 through regulation of apoptotic proteins , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Mansi Harjivan Chauhan, Divyang D. Vyas, Advancements in sentiment analysis – A comprehensive review of recent techniques and challenges , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Fire and smoke detection with high accuracy using YOLOv5 , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

