Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.18Keywords:
Thermoviscoelastic, Relaxation time, Non-Fourier effect, Damping, Non-local, Heat source, Non-simple micro-beam, Inverse quality factor.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study introduces a novel framework for investigating thermoelastic damping (TED) in viscoelastic micro-scale rectangular beams using the Euler-Bernoulli beam theory (EBBT). A two-temperature thermoviscoelastic model is developed, uniquely integrating non-Fourier effects and fractional-order parameters through a generalized thermoelasticity approach with an internal heat source and the dual-phase-lag (DPL) thermal conduction model. This innovative approach addresses the limitations of classical models by incorporating size-dependent effects and spatially varying thermal properties, providing new insights into thermal-mechanical coupling in micro-scale systems. Explicit formulas are derived for the inverse quality factor and frequency shifts, with the study comprehensively analyzing the influence of parameters such as beam thickness, aspect ratios, end constraints, relaxation constants, and fractional-order parameters. Novel findings reveal critical thickness ranges and phase-lag effects that govern energy dissipation and system dynamics. The results highlight the divergence from existing models, emphasizing the importance of nonlocal and fractional-order frameworks for accurately predicting damping and frequency behavior. Practical applications of the study include the optimization of micro-electromechanical systems (MEMS), nano-scale resonators, sensors, and energy-harvesting devices. By bridging theoretical advancements with tangible engineering solutions, this research provides a robust foundation for future exploration in thermal management and micro-scale system design, marking a significant contribution to the field. Graphical representations illustrate the effects of temperature discrepancy factors on damping and frequency shifts in non-simple micro-beams, offering a comprehensive understanding of the interaction between thermal and mechanical responses.Abstract
How to Cite
Downloads
Similar Articles
- Vikas Yadav, Parul Nangia, Bisphenol-A Induced Changes in Blood Indices of Channa punctatus and Alleviation with Vitamin C , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Manju Yadav, B.P. Singh, A Study of Environmental Awareness and Academic Achievement of Under-Graduate Tribal Students in Satna District (M.P.) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Anju Panwar, Satyendra Kumar, Charu Tyagi, Yougesh Kumar, On the Immune Response of Clarias batrachus After Immunisation with 25% SRBC , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Senthil Murugan C, Vijayabalan Dhanabal, Sukumaran D, Suresh G, Senthilkumar P, Analysis of distributions using stochastic models with fuzzy random variables , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kanwar D Singh, Rashmi Ashtt, Barriers to last mile connectivity: The role of crime in metro station accessibility , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Parwez Ahmad, Md Jamaluddin, Estimation of Some Heavy Metal Estimation at Sites of Saryug River as Lateral Tributary of the Ganga in Northern Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Charu Tyagi, Yougesh Kumar, Anju Panwar, Experimental Ascaridiasis Induced Immunosuppression in WLH Chicks: Biochemical Parameters , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- S. L. Nama, M. K. Goyal, G. Rathore, C. Ram, A Coconut Fruit Fossil (Cocos L.) from the Giral Lignite Mine of Akli Formation in Western Rajasthan, India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Amanda Q. Okronipa, Jones Y. Nyame, Exploring the effect of perceived empathy and social presence on the intention to use AI in higher education , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 36 37 38 39 40 41 42 43 44 45 > >>
You may also start an advanced similarity search for this article.

