Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.18Keywords:
Thermoviscoelastic, Relaxation time, Non-Fourier effect, Damping, Non-local, Heat source, Non-simple micro-beam, Inverse quality factor.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study introduces a novel framework for investigating thermoelastic damping (TED) in viscoelastic micro-scale rectangular beams using the Euler-Bernoulli beam theory (EBBT). A two-temperature thermoviscoelastic model is developed, uniquely integrating non-Fourier effects and fractional-order parameters through a generalized thermoelasticity approach with an internal heat source and the dual-phase-lag (DPL) thermal conduction model. This innovative approach addresses the limitations of classical models by incorporating size-dependent effects and spatially varying thermal properties, providing new insights into thermal-mechanical coupling in micro-scale systems. Explicit formulas are derived for the inverse quality factor and frequency shifts, with the study comprehensively analyzing the influence of parameters such as beam thickness, aspect ratios, end constraints, relaxation constants, and fractional-order parameters. Novel findings reveal critical thickness ranges and phase-lag effects that govern energy dissipation and system dynamics. The results highlight the divergence from existing models, emphasizing the importance of nonlocal and fractional-order frameworks for accurately predicting damping and frequency behavior. Practical applications of the study include the optimization of micro-electromechanical systems (MEMS), nano-scale resonators, sensors, and energy-harvesting devices. By bridging theoretical advancements with tangible engineering solutions, this research provides a robust foundation for future exploration in thermal management and micro-scale system design, marking a significant contribution to the field. Graphical representations illustrate the effects of temperature discrepancy factors on damping and frequency shifts in non-simple micro-beams, offering a comprehensive understanding of the interaction between thermal and mechanical responses.Abstract
How to Cite
Downloads
Similar Articles
- Neetu Singh, Ravindra Kumar Singh, Acute Toxicity of Sumithion Insecticide on Freshwater Catfish, Clarias batrachus (Linnaeus, 1758) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ali Dakheel, Ismaeil Mammani, Jiyar Naji, The effect of human periodontal pathogenic bacteria on immediate basal implant placement: A comparative study in beagle dogs , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Akhtar Parwez, Jamaluddin Ahmad, Heavy Metal Pollution in Chapra (Bihar) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Santosh T. Karmani, Sachin V. V. Acharekar, The impact of online degree programs on employment opportunities in contemporary India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Priyanka, Sandeep, Tarang Shrivastava, Sandeep Kumar, Vinay Viratia, Kinesio Taping Along with PNF Stretching Improved Ankle Dorsiflexion in Children with Spastic Diplegic Cerebral Palsy , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Sampa Mondal, Baibaswata Bhattacharjee, Amelioration of the UV-blocking property of ZnO nanoparticles as an active sunscreen ingredient , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Chaitanya A. Kulkarni, Reema Joshi, Isha Katariya, Tushar Palekar, A scoping review of influence of lifestyle factors on menstrual disorders in menstruating women , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rajesh Rayal, Riya Malik, Sanjay Madan, Anju Thapliyal, Drifting-Density and Diversity of Aquatic Mites in the Spring- Fed Stream Heval from Garhwal Himalaya , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Neha Sharma, Rajesh Rayal, K.P. Chamoli, Pankaj Bahuguna, Pratibha Baluni, Observation on the Diversity of Riparian Vegetation in the Sahastradhara Stream from Doon Valley (Uttarakhand) India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
<< < 40 41 42 43 44 45 46 47 > >>
You may also start an advanced similarity search for this article.

