Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.18Keywords:
Thermoviscoelastic, Relaxation time, Non-Fourier effect, Damping, Non-local, Heat source, Non-simple micro-beam, Inverse quality factor.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study introduces a novel framework for investigating thermoelastic damping (TED) in viscoelastic micro-scale rectangular beams using the Euler-Bernoulli beam theory (EBBT). A two-temperature thermoviscoelastic model is developed, uniquely integrating non-Fourier effects and fractional-order parameters through a generalized thermoelasticity approach with an internal heat source and the dual-phase-lag (DPL) thermal conduction model. This innovative approach addresses the limitations of classical models by incorporating size-dependent effects and spatially varying thermal properties, providing new insights into thermal-mechanical coupling in micro-scale systems. Explicit formulas are derived for the inverse quality factor and frequency shifts, with the study comprehensively analyzing the influence of parameters such as beam thickness, aspect ratios, end constraints, relaxation constants, and fractional-order parameters. Novel findings reveal critical thickness ranges and phase-lag effects that govern energy dissipation and system dynamics. The results highlight the divergence from existing models, emphasizing the importance of nonlocal and fractional-order frameworks for accurately predicting damping and frequency behavior. Practical applications of the study include the optimization of micro-electromechanical systems (MEMS), nano-scale resonators, sensors, and energy-harvesting devices. By bridging theoretical advancements with tangible engineering solutions, this research provides a robust foundation for future exploration in thermal management and micro-scale system design, marking a significant contribution to the field. Graphical representations illustrate the effects of temperature discrepancy factors on damping and frequency shifts in non-simple micro-beams, offering a comprehensive understanding of the interaction between thermal and mechanical responses.Abstract
How to Cite
Downloads
Similar Articles
- Jivesh Jha, Sonia D Sharma, Role of law to combat ecological imbalance in Nepal , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Suresh L. Chitragar, Measurement of agricultural productivity and levels of development in the Malaprabha river basin, Karnataka, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S Rehan Ahmad, KDV Prasad, Seema Bhakuni, Amit Hedau, P B Shankar Narayan, P Parameswari, The role and relation of emotional intelligence with work-life balance for working women in job stress , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Teklu Hailu, Regasa Begna , Pre-extension demonstration of inter-cropping of improved forages with food and cash crops at Semen Bench Woreda, Southwest Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. R. R. Prakash, Kishore Kunal, Designing information systems for business administration through human and computer interaction , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Firdaus Benazir, Reena Mohanka, S Rehan Ahmad, Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Moyliev Gayrat, Yunuskhodjaev Akhmadkhodja, Saidov Saidamir, Babakhanov Otabek, Mirsultanov Jakhongir, To study references and analysis of an experimental model for skin burns in rats , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Anvar Mavlonov , Saidamir Saidov , Jakhongir Mirsultanov, Rano Boboeva , The Features of bone destruction in rabbits with experimental metabolic syndrome , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 31 32 33 34 35 36 37 38 39 40 > >>
You may also start an advanced similarity search for this article.

