The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.5.01Keywords:
Explainable AI, Healthcare AI, Model Interpretability, Clinical Decision Support, Diabetes Prediction, PIMA Diabetes Dataset, Transparent Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The integration of Artificial Intelligence (AI) in healthcare has revolutionized disease diagnosis and risk prediction. However, the "black-box" nature of AI models raises concerns about trust, interpretability, and regulatory compliance. Explainable AI (XAI) addresses these issues by enhancing transparency in AI-driven decisions. This study explores the role of XAI in diabetes prediction using the PIMA Diabetes Dataset, evaluating machine learning models—logistic regression, decision trees, random forests, and deep learning—alongside SHAP and LIME explainability techniques. Data pre-processing includes handling missing values, feature scaling, and selection. Model performance is assessed through accuracy, AUC-ROC, precision-recall, F1-score, and computational efficiency. Findings reveal that the Random Forest model achieved the highest accuracy (93%) but required post-hoc explainability. Logistic Regression provided inherent interpretability but with lower accuracy (81%). SHAP identified glucose, BMI, and age as key diabetes predictors, offering robust global explanations at a higher computational cost. LIME, with lower computational overhead, provided localized insights but lacked comprehensive interpretability. SHAP’s exponential complexity limits real-time deployment, while LIME’s linear complexity makes it more practical for clinical decision support.These insights underscore the importance of XAI in enhancing transparency and trust in AI-driven healthcare. Integrating explainability techniques can improve clinical decision-making and regulatory compliance. Future research should focus on hybrid XAI models that optimize accuracy, interpretability, and computational efficiency for real-time deployment in healthcare settings.Abstract
How to Cite
Downloads
Similar Articles
- Archana Borde, Dattatraya Pandurang Rane, Pratap Vasantrao Pawar, Role of artificial intelligence in digital marketing in enhancing customer engagement , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Santosh T. Karmani, Sachin V. V. Acharekar, The impact of online degree programs on employment opportunities in contemporary India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Neeraj, Anita Singhrova, A critical review of blockchain-based authentication techniques , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Ayalew Ali, Sitotaw Wodajio, The effect of risk management on the bank’s financial stability in the emerging economy , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Vinay Viratia, Sandeep Kumar, Shama Praveen, Tarang Shrivastava, Priyanka, Enhancing Trunk Control Balance in Children with Spastic Diplegic Cerebral Palsy: Comparative Effectiveness of the Vestibular Stimulation Technique and Standard Treatment , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- P. L. Parmar, P. M. George, Study and optimization of process parameters for deformation machining stretching mode , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Gitesh Kalita, NEP 2020 policies for inclusive education , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Ayalew Ali, Sitotaw Wodajio, Audit committee characteristics nexus corporate social responsibilities disclosure of insurance companies in Ethiopia , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- R. A. Askerov, The role of improving the business environment in agriculture in ensuring the country’s food security , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper

