Econometric analysis of grain yields (using the example of the Republic of Azerbaijan)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.01Keywords:
Productivity, Crops, Econometric analysis, Agriculture, Statistical modeling.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article is an econometric analysis of the influence of factors affecting the yield of grain crops in the Republic of Azerbaijan. In the course of the work, the dependence of yield on climatic, economic and agrotechnical factors was assessed based on correlation and regression analysis. The results of statistical modeling were formed, which allows identifying the most important determinants, such as the number of meteorological workers, the level of mechanization of production at the enterprise, the average annual number of crops, the use of mineral fertilizers, and government funding. The data obtained can be used to develop detailed recommendations for increasing the efficiency of grain crop production, as well as developing forecast models to improve planning in agriculture.Abstract
How to Cite
Downloads
Similar Articles
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Suresh L. Chitragar, Measurement of agricultural productivity and levels of development in the Malaprabha river basin, Karnataka, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Teklil Abadeye, Teshome Yitbarek, Isreal Zewide, Kibinesh Adimasu, Assessing soil fertility influenced by land use in Moche, Gurage Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Krishna Deo Verma, A NOTE ON AGRICULTURE; CONCERNS,OPPORTUNITIES AND CHALLENGES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Brijesh Singh, Ajay Massand, Determinants of Gen Z’s adoption of chatbots in online shopping: An empirical investigation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

