Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.47Keywords:
Students, Sports behavior, Deep learning, Multi-perceptron neural network, Mutual, Behavioral feature analysis.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Sports performance predictions are essential in understanding student interest rates. Early indications of student progress facilitate athletic departments to improve their learning interests and make students perform better. Interests in sports involve understanding key physical factors that significantly impact students’ sports behavior and various other influencing factors. Deep learning techniques were used to develop a predictive model for student interest performance and support to identify the essential relationship influencing students’ sports behavior. Identifying sports interests is complex because student interests represent different features. Existing methods cannot predict the features and the relationship between their related attributes. Therefore, previous methods had low accuracy high time, and error rate performance. To resolve this problem, a deep learning (DL) based sports interest prediction model was proposed using a deep spectral multi-perceptron neural network (DSMPNN) to identify student sports interests. Initially, the preprocessing is carried out by Z-score normalization to verify the actual margins of student interest rate to make normalization by comparing the ideal and essential margins of student interest through behavioral feature analysis using student behavioral sports interest rate (SBSIR). According to the feature dimensionality reduction, the non-relational features are reduced using the spider foraging feature selection model (SFFM) to select the essential features. Then, a deep spectral multilayer perceptron neural network (DSMPNN) is applied to predict student interest by class sports interest. The classifier proves the prediction accuracy, precision, and recall rate of up to 96% high performance to analyze the interests of the sport. The suggested system also produces higher performance than the other system.Abstract
How to Cite
Downloads
Similar Articles
- Sharanagouda N. Patil, Ramesh M. Kagalkar, Analysis of substrate materials for flexible and wearable MIMO antenna for wireless communication , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Prakash Lakhani, Premasish Roy, Souren Koner, Deepa Nair, D. Patil, Mona Sinha, Exploring the influence of work-life balance on employee engagement in Mumbai’s real estate industry , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Faisal Alsanea, Challenging gender norms in parenting styles and their impact on children’s socialization and identity formation , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ramya Singh, Archana Sharma, Nimit Gupta, Nursing on the edge: An empirical exploration of gig workers in healthcare and the unseen impacts on the nursing profession , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Z. Admasu, E. Bayou, Current population size and risk status of the indigenous endangered Sheko cattle breed in south-west Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Suresh L. Chitragar, Occupational Structure of Population in the Malaprabha River Basin, Karnataka State, India; A Geographical Approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Firdaus Benazir, Reena Mohanka, S Rehan Ahmad, Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Saumya Trivedi, Amit Sinha, Satyendra P. Singh, Ramya Singh, A study on factors influencing lending decisions for MSMEs by scheduled commercial banks in the CGTSME scheme , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 31 32 33 34 35 36 37 38 39 40 > >>
You may also start an advanced similarity search for this article.