Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.47Keywords:
Students, Sports behavior, Deep learning, Multi-perceptron neural network, Mutual, Behavioral feature analysis.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Sports performance predictions are essential in understanding student interest rates. Early indications of student progress facilitate athletic departments to improve their learning interests and make students perform better. Interests in sports involve understanding key physical factors that significantly impact students’ sports behavior and various other influencing factors. Deep learning techniques were used to develop a predictive model for student interest performance and support to identify the essential relationship influencing students’ sports behavior. Identifying sports interests is complex because student interests represent different features. Existing methods cannot predict the features and the relationship between their related attributes. Therefore, previous methods had low accuracy high time, and error rate performance. To resolve this problem, a deep learning (DL) based sports interest prediction model was proposed using a deep spectral multi-perceptron neural network (DSMPNN) to identify student sports interests. Initially, the preprocessing is carried out by Z-score normalization to verify the actual margins of student interest rate to make normalization by comparing the ideal and essential margins of student interest through behavioral feature analysis using student behavioral sports interest rate (SBSIR). According to the feature dimensionality reduction, the non-relational features are reduced using the spider foraging feature selection model (SFFM) to select the essential features. Then, a deep spectral multilayer perceptron neural network (DSMPNN) is applied to predict student interest by class sports interest. The classifier proves the prediction accuracy, precision, and recall rate of up to 96% high performance to analyze the interests of the sport. The suggested system also produces higher performance than the other system.Abstract
How to Cite
Downloads
Similar Articles
- Manisha Anil Vhora, Vidya Bhandwalkar, Prashant Mangesh Rege, AI-driven HR analytics: Enhancing decision-making in workforce planning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- ALKA SRIVASTAVA, SANJAY KUMAR, STUDY OF NUTRIENT VALUE IN POST HARVESTED INFECTED ORANGE (CITRUS SINENSIS) FRUIT , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Vibhu Tripathi, India’s transformative journey: A decade and a half of growth, innovation, and inclusive progress , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Balasaheb Waphare, Rahilanaz Shaikh, Nitin Rane, A pair of fractional power of generalized hankel-clifford type transformations and their characteristics , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- RASHMI TRIPATHI, STRESS RELATED HISTOPATHOLOGICAL CHANGES IN THE HEPATOPANCREAS OF BOTH THE SEXES OF PALAEMONID PRAWN MACROBRACHIUM DAYANUM (HENDERSON) (CRUSTACEA : DECAPODA) , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Rattan Singh, Sushil Gupta, Anil Kumar, EFFECTS OF SOURCES, INFORMATION, COMMUNICATION AND KNOWLEDGE IN HIV/AIDS AWARENESS PROGRAMME IN PUNJAB. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Ruchira P Dudhrejiya, A critical analysis of power dynamics in Vijay Tendulkar's theatrical tapestry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Joji John Panicker, Ancy Elezabath John, Nair Anup Chandrasekharan, A tapestry of tradition: Revitalization of Indian Heritage and Folk Art , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.