Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.47Keywords:
Students, Sports behavior, Deep learning, Multi-perceptron neural network, Mutual, Behavioral feature analysis.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Sports performance predictions are essential in understanding student interest rates. Early indications of student progress facilitate athletic departments to improve their learning interests and make students perform better. Interests in sports involve understanding key physical factors that significantly impact students’ sports behavior and various other influencing factors. Deep learning techniques were used to develop a predictive model for student interest performance and support to identify the essential relationship influencing students’ sports behavior. Identifying sports interests is complex because student interests represent different features. Existing methods cannot predict the features and the relationship between their related attributes. Therefore, previous methods had low accuracy high time, and error rate performance. To resolve this problem, a deep learning (DL) based sports interest prediction model was proposed using a deep spectral multi-perceptron neural network (DSMPNN) to identify student sports interests. Initially, the preprocessing is carried out by Z-score normalization to verify the actual margins of student interest rate to make normalization by comparing the ideal and essential margins of student interest through behavioral feature analysis using student behavioral sports interest rate (SBSIR). According to the feature dimensionality reduction, the non-relational features are reduced using the spider foraging feature selection model (SFFM) to select the essential features. Then, a deep spectral multilayer perceptron neural network (DSMPNN) is applied to predict student interest by class sports interest. The classifier proves the prediction accuracy, precision, and recall rate of up to 96% high performance to analyze the interests of the sport. The suggested system also produces higher performance than the other system.Abstract
How to Cite
Downloads
Similar Articles
- Anil Kumar, Aditya Kumar, Synthesis, spectral characterization and antimicrobial effect of Cu(II) complexes of schiff Base Ligand, N-(3,4- dimethoxybenzylidene)-3-aminopyridine (DMBAP) Derived from 3,4-dimethoxybenzaldehyde and 3-aminopyridine , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ishfaq Ahmad Malik, Showkat Ahmad Shah, Economic impact of COVID-19 on Ethiopian micro, small, and medium enterprises and policy measures , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Showkat Ahmad Shah, Netsanet Gizaw, Impact of selected macroeconomic variables on economic growth in Ethiopia: A time series analysis , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- B Bindu, Srikanth N, Haris Raja V, Barath Kumar JK, Dharmendra R, Comparative analysis of inverted pendulum control , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pratik Ghosh, Sriram M, A systematic review of social media communication with respect to fashion brands , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Neetu Singh, Ravindra Kumar Singh, Acute Toxicity of Sumithion Insecticide on Freshwater Catfish, Clarias batrachus (Linnaeus, 1758) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ahmed Mustefa, Ethiopian Voluntary Resettlement Programme-Lesson to Learn , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ranjeet Kaur, P N Tripathi, Comparative Study on SARS-CoV-2 Variants , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.