Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.46Keywords:
Big data, predictive analytics, stochastic kernelized quadratic discriminant analysis, qualitative indexed extreme learning classifier, Baroni–Urbani–Buser coefficient, Hardlimit activation function.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Predictive analytics has appeared as a dominant tool to improve crop yield in the agriculture field by leveraging big data. Soil is a vital aspect in determining the growth of crop production, and its attributes considerably influence crop growth, nutrient availability, and overall crop yield. Predictive analytics involves the combination of big soil data with weather information for crop yield estimation. By utilizing chronological data on crop performance, different machine learning (ML) and deep learning (DL) models have been developed to forecast crop yield outcomes under different scenarios. However, accurate prediction in the shortest possible time is a major challenging issue. A novel model called stochastic kernelized discriminant extreme learning machine classifier (SKDELMC) is introduced for crop yield forecast by analyzing large amounts of soil as well as weather big data. This SKDELMC model typically includes feature selection and classification to identify the most relevant features and classify the data into different categories. A number of data is gathered from a dataset. This data includes a range of soil parameters and the weather features that influence crop growth. After the data collection, with a huge number of features, it’s important to choose mainly relevant ones for predictive analytics. The stochastic kernelized quadratic discriminant analysis is applied to identify the main informative features to minimize time complexity prediction. Once relevant features are chosen, the next step is to classify data into different categories using the qualitative indexed extreme learning classifier. It is a feed-forward neural network having a straightforward solution without requiring any iteration. A network includes different layers, such as the input layer, multiple hidden layers, as well as output layer. Relevant features are provided to the input layer. Then Baroni–Urbani–Buser coefficient is applied in the hidden layer by analyzing testing as well as training data is the qualitative index used to analyze the similarity between the data. After that, the Hardlimit activation function is utilized for evaluating similarity value as well as providing classification results. Based on the classification results, accurate prediction outcomes are attained at the output layer. Experimental evaluation is carried out by dissimilar quantitative parameters, namely disease prediction accuracy, sensitivity, false-positive rate, prediction time, and space complexity. Discussed performance outcomes illustrate that the SKDELMC model improves the accuracy of prediction and decreases the time consumption as well as space complexity than existing prediction techniques.Abstract
How to Cite
Downloads
Similar Articles
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Karthik Gangadhar, Prem Kumar N, Neuroprotective activity of alcoholic extract of Operculina turpethum roots in aluminum chloride-induced Alzheimer’s disease in rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Karan Berry, Shiv Kumar, Exploring the mediating role of gastronomic experience in tourist satisfaction: A multigroup analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- RUCHI SHARMA, YOUGESH KUMAR, STATISTICAL ANALYSIS OF MONOGENEAN POPULATIONS INFESTING FRESH WATER FISH CHANNA PUNCTATUS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Brijesh Singh, Ajay Massand, Determinants of Gen Z’s adoption of chatbots in online shopping: An empirical investigation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.