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Abstract

Predictive analytics has appeared as a dominant tool to improve crop yield in the agriculture field by leveraging big data. Soil is a vital
aspect in determining the growth of crop production, and its attributes considerably influence crop growth, nutrient availability, and
overall crop yield. Predictive analytics involves the combination of big soil data with weather information for crop yield estimation. By
utilizing chronological data on crop performance, different machine learning (ML) and deep learning (DL) models have been developed to
forecast crop yield outcomes under different scenarios. However, accurate prediction in the shortest possible time is a major challenging
issue. A novel model called stochastic kernelized discriminant extreme learning machine classifier (SKDELMCQ) is introduced for crop yield
forecast by analyzing large amounts of soil as well as weather big data. This SKDELMC model typically includes feature selection and
classification to identify the most relevant features and classify the data into different categories. A number of data is gathered from a
dataset. This data includes a range of soil parameters and the weather features that influence crop growth. After the data collection, with
a huge number of features, it’s important to choose mainly relevant ones for predictive analytics. The stochastic kernelized quadratic
discriminant analysis is applied to identify the main informative features to minimize time complexity prediction. Once relevant features
are chosen, the next step is to classify data into different categories using the qualitative indexed extreme learning classifier. It is a feed-
forward neural network having a straightforward solution without requiring any iteration. A network includes different layers, such as the
input layer, multiple hidden layers, as well as output layer. Relevant features are provided to the input layer. Then Baroni-Urbani-Buser
coefficient is applied in the hidden layer by analyzing testing as well as training data is the qualitative index used to analyze the similarity
between the data. After that, the Hardlimit activation function is utilized for evaluating similarity value as well as providing classification
results. Based on the classification results, accurate prediction outcomes are attained at the output layer. Experimental evaluation is
carried out by dissimilar quantitative parameters, namely disease prediction accuracy, sensitivity, false-positive rate, prediction time,
and space complexity. Discussed performance outcomes illustrate that the SKDELMC model improves the accuracy of prediction and
decreases the time consumption as well as space complexity than existing prediction techniques.

Keywords: Big data, predictive analytics, stochastic kernelized quadratic discriminant analysis, qualitative indexed extreme learning
classifier, Baroni-Urbani-Buser coefficient, Hardlimit activation function.

extracting meaningful insights and actionable intelligence
from this data is a major challenging task without efficient
and effective techniques. Advanced analytics methods such
as statistical modeling, ML, and DL models have been used
to analyze the data and construct predictive models.

An integrated ConvLSTM layer through 3-Dimensional
CNN (3DCNN) for crop vyield prediction technique called
‘DeepYield’ was developed for accurate and reliable
spatiotemporal feature extraction and classification. But,

Introduction

Prediction analytics with big data is a process of combining
the capabilities of advanced analytics techniques with a
huge volume of data to make accurate predictions. With
the exponential growth of data from diverse sources,
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the prediction accuracy level was not enhanced by lesser
time utilization. A novel Bayesian model averaging (BMA)
model was developed for predicting crop yield by measuring
the uncertainty of model parameters as well as inputs
concurrently. But high complexity of crop yield forecast
was a major issue.

For effectively predicting soil moisture with better
accuracy, a long short-term memory network (LSTM) was
designed. The averaging method was applied to the outputs
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of individual LSTM methods to enhance forecast accuracy.
But soil moisture attributes such as temperature, humidity,
pH, and electrical conductivity, were not considered to
enhance the prediction.

Machine learning techniques were developed to
predict popular yields of crops with higher accuracy. The
model’s prediction performance was not enhanced since
it failed to select some more relevant features. A Relief
algorithm was designed to select the significant feature for
efficient agricultural crop yield forecast with the help of ML
techniques. However, the time-efficient prediction was not
obtained, Gavahi, K., Abbaszadeh, P, & Moradkhani, H. (2021),
Bazrafshan, O., Ehteram, M., Latif, S. D., Huang, Y. F., Teo, F.
Y., Ahmed, A. N., & EI-Shafie, A. (2022), Datta, P., & Faroughi,
S. A. (2023), Pant, J., Pant, R. P, Singh, M. K., Singh, D. P,, &
Pant, H. (2021), Gupta, S., Geetha, A., Sankaran, K. S., Zamani,
A.S., Ritonga, M., Raj, R., Ray, S., & Mohammed, H. S. (2022).

For multi-layer soil moisture forecast, Integration of
support vector machines (SVM) and ensemble Kalman filter
was developed. However it failed to consider more data to
further estimate the spatial performance of soil moisture
prediction. An artificial neural network was developed to
measure the yield prediction with paddy crops by using
climatic data. However, it failed to use the soil features for
accurate prediction. Coupling Delphi durum wheat method
was designed using climate seasonal forecasts information
for early crop yield prediction. But a higher sensitivity was
not attained in the crop yield prediction, Zhu, Q., Wang,
Y., & Luo, Y. (2021), Amaratunga, V., Wickramasinghe, L.,
Perera, A., Jayasinghe, J., & Rathnayake, U. (2020), Dainelli, R.,
Calmanti, S., Pasqui, M., Rocchi, L., Di Giuseppe, E., Monotti,
C., Quaresima, S., Matese, A., Di Gennaro, S. F., & Toscano,
P.(2022).

A classifier ensemble-based prediction method was
developed in [9] for rice yield prediction by using climatic
datasets. But ensemble-based forecast method was not
extended for the prediction of dissimilar crop yields with
higher accuracy. For soil moisture prediction based on
the correlation between meteorological features, a back
propagation (BP) neural network regression method
optimized through a genetic algorithm (GA) was developed.
However, analysis of soil moisture difference at dissimilar soil
depths was not performed, Mishra, S., Mishra, D., Mallick, P.
K., Santra, G. H., & Kumar, S. (2021), Liu, D., Liu, C,, Tang, Y., &
Gong, C. (2022).

Contributing remarks

«  Anovel SKDELMC model is developed to improve
the prediction analysis through feature selection
and classification.

«  Tominimize prediction time and space complexity,
stochastic kernelized quadratic discriminant analysis
is performed to choose relevant features from the
big dataset.

«  Todesign an algorithm named qualitative indexed
extreme learning classifier for the forecast with
selected features through the Baroni-Urbani-Buser
coefficient. Then, the Hardlimit activation function is
also employed in the learning process to categorize
data into dissimilar classes. This in turn, increases
accuracy sensitivity and minimizes the false positive
rate.

- Anextensive experimental evaluation is performed
through an assortment of performance metrics to
demonstrate the enhancement of the SKDELMC
model over existing techniques.

Structure of the manuscript

The rest of this manuscript is organized as below. Section
2 provides related works on several prediction methods.
Section 3 narrates the principle behind our research via
the SKDELMC model for prediction. Section 4 describes the
experimental setup. Section 5 explains the results as well as
their discussions in detail. Section 6 presents the conclusion.

Related works

A deep recurrent Q-network approach was introduced for
predicting crop yield. The designed approach minimized
error and maximized forecast accuracy, but the computing
efficiency of the training process was not minimized. A
Gaussian processes (GPs) model was developed for the
evaluation of crop yield prediction. However, it failed to
assess the model’s transportability through multitask GPs
for higher crop diversity. An ensembling classifier system
was developed for crop yield forecasts depending on soil
classification. However feature selection process was not
performed to enhance forecast performance with minimum
time, Elavarasan, D., & Vincent, P. M. D. (2020), Martinez-
Ferrer, L., Piles, M., & Camps-Valls, G. (2021), Waikar, V. C,,
Thorat, S. Y., Ghute, A. A., Rajput, P. P,, & Shinde, M. S. (2020).

ML and Al models were designed for enhanced forecasts
of cropyield. But, the performance of crop yield forecast with
the minimum error was not attained. The artificial neural
network (ANN) method was designed to provide predictions
of cotton yield. However, environmental-related factors
were not considered for cotton yield prediction. ML model
was developed in [16] for better prediction accuracy by
using proficient feature selection techniques to preprocess
raw data., the prediction time was not reduced, Kundu, S. G.,
Ghosh, A., Kundu, A., & Girish, G. P.(2022), Yildirim, T., Moriasi,
D.N., Starks, P.J., & Chakraborty, D. (2022), Raja, S. P., Sawicka,
B., Stamenkovic, Z., & Mariammal, G. (2022).

An XGBoost model was designed for maize yield
prediction accuracy by merging soil parameters as well as
environmental variables. However, sensitivity analysis was
not carried out. The random forest algorithm was designed
for accurate crop yield forecasts based on the environment
as well as weather data. But complexity of the crop yield



Extreme Learning Machine Classifier for Predictive Analytics 397

prediction was not reduced, Nyéki, A., Kerepesi, C., Daroczy,
B., Benczur, A., Milics, G., Nagy, J., Harsanyi, E., Kovacs, A. J.,
& Neményi, M. (2021), Jhajhariaa, K., Mathura, P,, Jaina, S., &
Nijhawan, S. (2023).

A Multiscale Extrapolative Learning Algorithm (MELA)
was developed for predicting crop yields depending on
soil moisture data. The designed algorithm failed to include
validation of consistent extensibility of time series of various
data sorts than the soil moisture. Crop yield prediction
through remotely sensed data, Deep Learning Multi-Layer
Perceptron (DLMLP) neural networks were introduced. But
it failed to obtain better as well as more precise yield data,
Chakraborty, D., Basagaogdlu, H., Alian, S., Mirchi, A., Moriasi,
D. N., Starks, P. J., & Verser, J. A. (2023), Tripathi, A., Tiwari, R.
K., & Tiwari, S. P. (2022).

Methodology

Crop yield forecast is a crucial task for agricultural experts
to make informed decisions about planting, harvesting, as
well as administration of their crops. By using climate as well
as soil data, with corresponding crop yield data, the aim is
to develop a predictive method for accurately estimating
crop yields. Conventional methods have some significant
challenges to performing accurate predictive analytics in
a time-efficient manner. Therefore, the SKDELMC model is
developed for crop yield forecast by evaluating the big data
with minimum time consumption.

The SKDELMC model consists of feature selection
and classification that offer several advantages in crop
yield forecast. The feature selection process of the
SKDELMC model improves the model performance by the
dimensionality of the data and focuses on the variables
that have the most significant impact on the target. Also
significantly reduces the computational complexity and
training time required for predictive models to be more
time-efficient and scalable. Overall, feature selection and
classification processes play a vital role in improving model
performance, computational efficiency, and robustness in
prediction tasks. The architecture diagram of the SKDELMC
model is shown in figure 1.

[ ———
Big dataset
Data collection

Stochastic kernelized quadratic discriminant
analysis based feature selection

‘Obtain significant features

l Training data

Testing [ Qualitative indexed extreme leaming classifier ]

data 1
_ Catcoorize damimto differentclasses D
1

&

ﬂ Accurate prediction

Figure1: architecture diagram of SKDELMC model

Figure 1, given above illustrates the architecture design
of SKDELMC that includes “Stochastic kernelized quadratic
discriminant analysis-based feature selection for enhancing
prediction accuracy through big data.” Initially, a data
collection process is carried out that involves gathering and
storing large volumes of structured data—the key steps
involved in collecting and managing the big data collected
from the dataset.

When dealing with big data, dimensionality reduction
techniques are employed in the SKDELMC model to
decrease the number of features while preserving important
information. Stochastic kernelized quadratic discriminant
analysis is commonly used for dimensionality reduction.
Once the relevant features from your dataset are present,
the SKDELMC model proceeds with data classification. The
dataset is divided into two subsets called training set and
test set to train a classification model. Selected features
from the training set are fed into the chosen classification
algorithm called the Qualitative indexed extreme learning
classifier. The algorithm learns the patterns and analyzes
the relationships among training and testing data as well
as finally provides the corresponding labels or classes. A
detailed explanation of the proposed SKDELMC model is
given below.

Stochastic kernelized quadratic discriminant
analysis-based feature selection

Feature selection is a method of choosing a subset of
significant features or attributes from a bigger set of features
in a dataset. The main aim is to identify the discriminative
features that contribute the most to the prediction analysis.
As the number of features or dimensions in the dataset
enhances, the amount of data needed to efficiently
symbolize and analyze that data efficiently also increases
rapidly. By eliminating irrelevant or redundant features,
the proposed SKDELMC model aims to improve model
performance, optimize computational efficiency, and obtain
dimensionality reduction.

The SKDELMC model uses stochastic kernelized quadratic

Construct tha

featurs matrix

TEE
A=|a,'1_1_ a3 - rz,z,,J

Gt G2 o G

)
Stochastic kemelized quadratic dissrimi
amalysis

I}

Measure relationship between features

using Gaussian kemel
C Obtain significant fasturas )

Figure 2: Flow diagram of stochastic kernelized quadratic
discriminant analysis-based feature selection
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discriminant analysis for relevant feature selection from a
big dataset. Discriminant analysis is a method employed to
measure likelihood estimation through the help of Gaussian
kernel functions. The likelihood method is a measure of the
relationship among features.

Figure 2 illustrates a flow diagram of stochastic
kernelized quadratic discriminant analysis-based feature
selection. The big crop yield dataset is provided as input.
To begin with, raw input big dataset ' D’ originated in the
structure of matrix as below.

A:|:alla12...ah1 a,@,...3, .. .amlamz...aan

O

Where A denotes an input feature matrix with 'n’
column and m row. Indicates a number of instances.
Column denotes a number of features. Through the above
set of matrices, initial relevant features are identified. To
obtain relevant features from a huge dataset, the Gaussian
kernelis applied to analyze the relationship among columns
of features in the matrix.

Let us consider a, and a. be column vectors of features.

]
The Gaussian kernel is expressed as below,

2
fris
expexp| —0.5

K(ai,aj): \/%R T 2

Where K(ai,aj) denotes Gaussian kernel Quadratic

discriminant analysis output, R indicates deviation. The
kernel function provides an output score from 0to 1.On the
scores obtained from equation (2), select a subset of features
that are most relevant to the classification task. The highest
score value is used for selecting the top relevant features.
The output of the kernel is typically a decision function that
provides two outputs to each input feature such as relevant
orirrelevant.

Y= {K(ai,aj) > 0.5 ;relevant features subset Otherwise;

irrflevant feature 3)
Along with the decision output ( K(ai,aj) >0.5),
the relevant feature subset is used for the next classification
task. Other irrelevant or redundant features are removed.
This process reduces the time complexity of prediction.

The overall Gaussian kernel quadratic discriminant
analysis algorithm is given below.

Algorithm 1 illustrates a procedure of relevant feature
selection as well as redundant feature removal using
Gaussian kernel Quadratic discriminant analysis. The
raw dataset is chosen and constructs the input feature
matrix. The gaussian kernel is employed for measuring the
relationship between features. After that, based on the
estimated score value, relevant features are chosen, as well
as eliminating redundant features. This assists in enhancing
accurate forecasts in a timely manner.

: /I Algorithm 1: Gaussian kernel Quadratic discriminant analysis based feature selection

Input: Dataset ‘D”, features or attributes A = { ay,a,,a3,..a,}

Output: selected attributes

Begin

1. For each dataset “D” with attributes "A”

2. Create input feature matrix "4’ as given in (1)

3. Measure relationship between the features using (2)
4. I (& (a,a;) > 05) then

5 Select relevant features

6. elseif "(K (az,a)) < 0.5)" then

T Irrelevant features

8 End if

9. Select relevant features and remove redundant features
10. End for

End

Qualitative indexed extreme learning classifier-based
prediction

Once relevant features are chosen, the next step is
to categorize the data into different classes using the
qualitative indexed extreme learning classifier. It is a feed-
forward neural network having a straightforward solution
without requiring any iteration. The network comprises
numerous layers. Selected relevant features are provided
to the input layer. Then Baroni-Urbani-Buser coefficient is
appliedin the hidden layer by analyzing testing and training
data. Itis the qualitative index used to analyze the similarity
between the data. After that, the Hardlimit activation
function is used for evaluating similarity value as well as
providing classification results.

Figure 3illustrates the structure of a qualitative indexed
extreme learning classifier for accurate data classification.
Itis a sort of feed-forward neural network employed for data
classification as well as feature learning by a single layer or
multiple layers of hidden. In Figure 3, let us assume which
training set {T, Z} where T indicates training data through

selected features.’{al,az,...,ak}’ and label or output ‘Z’

denoting its type that belongs to dissimilar classes.

Output layer

Hidden
layers

f f ] I

Figure 3: constructions of qualitative indexed extreme learning
classifier

input layer
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In Figure 2, the classifier receives ‘n’ training data (
Ti =T1,T2,...,Tn ), and arbitrarily set a weight matrix
between the input and hidden layer.

Bij :[BIIBIZ”'BIH By By Byt By BmZ"'an:| @)

Where, Bij denotes a weight matrixamong input as well
as hidden layer, and bias is added as follows,

n
X, =Z:i:1(Ti *Bij)+w (5)
Where activity of neurons at the input layer.’ X
Bi,’ indicate weight between input as well as a hidden
layer, added bias function’'W’ that stored value is ‘1. Layer
receives only training data. However, it did not carry out any
mathematical process,

In hidden layers, Baroni—-Urbani-Buser coefficient
is applied for analysing testing and training data. is the
qualitative index used to evaluate the similarity between
the training and testing data.

B =1 N_Zilz;‘]‘i_Tsj‘
< N+ /Ti*Tsj ~Ts,

Where, BC indicates a Baroni-Urbani-Buser
coefficient, N indicates a number of data, T. denotes
training data, Tsj indicates testing data. The coefficient
returns the output values as 0 or 1. coefficient outcomes
are provided to the Hardlimit activation function to provide
classification results.

Output of the hidden layer is expressed as below,

Q=31 (Bjk h o+ W) 7)

Where, Q 'indicates an output of hidden layer, f"1
denotes an activation function,’ Bjk "denotes weight among

(6)

jth hidden layer neuron and k™ output layer neuron, h0
represent output of previously hidden layer, b indicate the
number of hidden units, W indicates a bias

The hardlimit activation function ‘fa’ pushes the
neuron to generate the output 1 if the Baroni-Urbani-Buser
coefficient reaches a maximum value, otherwise it outputs
0. This allows a neuron to make a decision or classification

fa ={l, ich 0, otherwise (8)

Where, fa indicates an activation function returns ‘1" if
the coefficient reaches a maximum value ’ Bc ', otherwise ’

fa "returns’ 0". Finally, output of final classification at output
layer is given below,
Z :QBJ_ )
Where, Z indicates an output of the classifier, Q indicate
output of hidden layer, Bj represent a weight of output layer.
Finally, the classified results are obtained at the output layer.

Depend on accurate classification outcomes, prediction is
carried out by higher accuracy and lesser error rate.

The above algorithmic steps are employed for classifying
input data to different categories using a Qualitative indexed
extreme learning classifier. Extreme learning classifier
receives training data as input. The classifier uses the training
data to construct a hidden layer. Similarity coefficients
between training data and testing data are measured in
the hidden layer. Similarity coefficient values obtained in
the previous step are analyzed using a hardlimit activation
function. The hardlimit function applies a threshold to
the similarity coefficients, transforming them into binary
values (0 or 1). This analysis helps determine which data are
classified into particular classes. The analysis is performed,
and final classified outcomes are obtained at the output
layer. These results indicate the class or category to which
each input data belongs based on the activation of hidden
layer neurons. With classified results obtained in the
previous step, the effective prediction results are obtained
with minimum error.

Experimental evaluation

Experimental evaluations of the SKDELMC and existing
DeepYield and BMA are implemented using JAVA with
SMART FASAL (Smart Irrigation and Fertilization System for
Precision Agriculture using Internet of Things and Cloud
Infrastructure) dataset taken from http://smartfasal.in/ftp-
dataset-portal/. Portal stores real-time soil data for three
crops namely Capsicum, Wheat Dataset, and Rice Dataset.
Among three crops, the rice dataset is considered to perform
the experiment. The dataset comprises 13 attributes or
features and 42666 instances. First, soil moisture data and
weather conditions are collected for Precision Agriculture,
Gavahi, K., Abbaszadeh, P., & Moradkhani, H. (2021),
Bazrafshan, O., Ehteram, M., Latif, S. D., Huang, Y. F,, Teo, F.
Y., Ahmed, A. N., & EI-Shafie, A. (2022).

A Algorithm 2: Qualitative indexed extreme learning classifier

Input: selected features (i.e. raining data) T; and testing data Ts;

OQutput: Increase the pradiction accuracy
Begin

1. Number of relevant features with training dats given to input layer
2. Assign the random weight and bias %, = E,"_‘(F,-« B,j} + W

3. Foreach trzining data T; /[ hidden laver 1]

4, For each testing data T;

N-Eit BT

Lad

Measure the similarity B, =1 — [

N [ToTE- Ty
end for

end for

Apply activation function to estimate similarity value
if (max B, ) then// [ hidden layer 2]

10. [ provides the results ‘17

1L eke

o g am

12 fz provides the results *0°
13 end if
14. Obtain the classification results at the output layer




400 Anita M et al.

The Scientific Temper. Vol. 15, special issue

Table 1: Feature Description

Table 2: Prediction Accuracy versus Number of Data

S.No Feature Description

1 Sensor ID
Acquires information from the

2 Soil_moisture 1 sensors installed within the soil at
a depth level 15cms
Acquires information from the

3 Soil_moisture 2 sensors installed within the soil at
a depth level 45cms
Acquires information from the

4 Soil_moisture 3 sensors installed within the soil at
a depth level 80cms

5 TEMP Soil temperature

6 HUMD Soil humidity

7 PRSR Soil pressure

8 LMNS Soil Luminosity

9 Rainfall Rainfall per day (mm)

10 week cycle count Week cycle count of recording

11 Day day of recording

12 Date Date of recording (DD:MM:YY)

13 Time IST Time of recording

Experimental Results for Model Comparison
Experimental results of SKDELMC and conventional
DeepYield and BMA are discussed through dissimilar
evaluation parameters, namely prediction accuracy,
sensitivity, false-positive rate, prediction time, and space
complexity, Gavahi, K., Abbaszadeh, P., & Moradkhani, H.
(2021), Bazrafshan, O., Enteram, M., Latif, S. D., Huang, Y. F,
Teo, F. Y., Ahmed, A. N., & EI-Shafie, A. (2022).

Comparison of prediction accuracy

It is measured as a ratio of a number of data taken from
the dataset correctly classified to dissimilar classes to total
number of data taken for experimentation. Performance of
overall accuracy is evaluated as given below,

ACd.
Pre = L [*¥100 (10)
a d

Where ’Prea " denotes the prediction accuracy, ‘ACD/
represents a number of data properly classified and ’

dn’ indicates a total number of data. It is measured in
percentage (%).

Figure 4 given above illustrates the graphical analysis of
prediction accuracy with number of data related to weather
and soil taken from the dataset. This figure, the x-axis
indicates a number of data, and y-axis denotes prediction
accuracy of crop yield. The graph shows both upward
and down trend, suggesting that as the number of data
increases, the prediction accuracy improves or decreases

Prediction Accuracy (in %)

Number of data

SKDELMC (%)  DeepYield (%)  BMA (%)
4000 96.4 88.05 90.3
8000 95.68 89 90.82
12000 97.12 87.12 91.54
16000 96.52 86.86 91.03
20000 95.61 87.27 90.61
24000 95.88 86.89 89.21
28000 97.18 86.26 91.62
32000 96.95 87.04 91
36000 96.14 87.93 90.7
40000 95.6 86.41 89.97

based on the complexity of the problem quality of data.
on the information provided, it appears that the SKDELMC
model has shown enhanced prediction accuracy than the
existing DeepYield and BMA methods. The SKDELMC model
utilizes a qualitative indexed extreme learning classifier
and applies a Baroni-Urbani-Buser coefficient to examine
provided training data samples by testing data for crop
yield forecast. Depending on analyzed results, the crop yield
prediction is attained., examined outcome indicates that
performance of crop yield prediction accuracy by SKDELMC
model has shown a 10% increase compared to the DeepYield
method and a 6% increase compared to the BMA method.
This suggests that the SKDELMC model has outperformed
other two techniques in terms of prediction accuracy for
crop yield, Gavahi, K., Abbaszadeh, P., & Moradkhani, H.
(2021), Bazrafshan, O., Ehteram, M., Latif, S. D., Huang, Y. F,
Teo, F. Y., Ahmed, A. N., & El-Shafie, A. (2022).

Comparison of sensitivity:
It is measured as ratio of number of true positives i.e.
proportion of correct predictions in predictions of positive

Table 3: Sensitivity (in %) Versus Number of Data

Sensitivity (in %)

Number of data
SKDELMC (%)  DeepYield (%)  BMA (%)

4000 95.27 86.45 89.7
8000 94.56 87.77 89.43
12000 9545 85.18 88.79
16000 94.44 82.84 88.26
20000 94.94 85.62 87.77
24000 93.19 84.85 87.59
28000 95.03 83.71 86.11
32000 94.4 85.79 88.78
36000 95.03 84.04 86.81
40000 93.91 83.13 85.38
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Figure 4: Graphical analysis of prediction accuracy

class to total number of data taken for experimentation. It
is evaluated as given below,

TPd.
S= 1 L [*¥100 (m

Where ‘S denotes the sensitivity, ’TPdii’ indicate

number of data true positively classified and ’dn "denotes

total number of data. It is measured in percentage (%).

Figure 5 shows the graphical analysis for sensitivity
with number of data in crop yield prediction with big data.
Sensitivity refers to different aspects of the prediction
model, such as its ability to analyze the weather and solid
dataforarice crop. In this figure 5, x-axis represents number
of data, and y-axis indicates sensitivity of prediction model.
With the big data, as number of data increases, SKDELMC
model potentially measures a similarity and variations
present in the data. This increased sensitivity allows the
SKDELMC model to make accurate predictions. It'simportant
to note that the relationship between testing and training
data depends on the Baroni-Urbani-Buser coefficient. Then
the activation function analyzes the results with higher true
positive rate. The overall comparison results information
provided, the proposed SKDELMC model has shown a
sensitivity rate of 12% improved in crop yield prediction
when compared and 8% when compared, Gavahi, K.,
Abbaszadeh, P., & Moradkhani, H. (2021), Bazrafshan, O.,
Ehteram, M., Latif, S. D., Huang, Y. F., Teo, F. Y., Ahmed, A. N.,
& El-Shafie, A. (2022) .

False positive rate

It is measured as ratio of number of data falsely or wrongly
classified to various classes to total number of data taken
for experimentation. Performance of overall accuracy is
evaluated as given below,

NICd.
FPR = L [*100 (12)
d
n
Where ‘FPR ' indicates a false positive rate, *
NICd, " denotes the number of data wrongly classified 'd

" be total number of data. It is measured in percentage (%).
Figure 6 illustrates performance analysis of the false

Table 4: False Positive Rate (in %) Versus Number of Data

False Positive Rate (in %)

Number of data
SKDELM DeepYield BMA
4000 3.6 11.95 9.7
8000 4.31 11 9.17
12000 2.87 12.87 8.45
16000 3.47 13.13 8.96
20000 4.39 12.72 9.39
24000 411 13.1 10.78
28000 2.81 13.73 8.37
32000 3.04 12.95 8.99
36000 3.85 12.06 9.29
40000 439 13.58 10.03
9 1] T
04 I T
82 |
z® 1
’; 28 HiN m
£ S I | ¥ SKDELMC
% 84 1 ] I 0 ) @ DeepYield
Tay il 1l [ | wmva
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Figure 5: Graphical analysis of sensitivity

positive rate with a number of data by SKDELMC and existing
DeepYield and BMA. As shown in Figure 6, the performance
of the false positive rate is considerably reduced by the
SKDELMC model than the existing methods. This is because
the data accurately classified through enhanced accuracy
and a true positive rate. Improved performance in terms of
false positive rate is attained through accurate classification
of data with higher accuracy and true positive rate. This

Table 5: Prediction time versus Number of Data

Prediction Time (in ms)

Number of data

SKDELM DeepYield BMA
4000 16.8 22 18
8000 18.4 224 20.8
12000 25.2 31.2 27.6
16000 28.8 384 32
20000 30 40 36
24000 33.6 43.2 37.2
28000 40.6 47.6 42
32000 45.44 51.2 48
36000 50.76 57.6 55.08

40000 544 64 60.4
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Table 6: Space Complexity versus Number of Data

Number of data Space complexity (in MB)
SKDELMC (MB)  Deepyield (MB) ~ BMA (MB)

4000 17.2 24 20
8000 20 26.4 224
12000 25.2 33.6 30.6
16000 28.8 384 33.6
20000 32 40 36
24000 34.8 39.6 37.2
28000 38.08 42.56 40.6
32000 41.6 48 44.8
36000 50.4 57.6 54
40000 58 64 60

accuracy is achieved by applying an extreme machine
classifier, which accurately categorizes the data and by
minimizing incorrect classifications through the use of
a similarity coefficient and activation functions. In the
experiment conducted with 4000 data, the false positive
rate was observed to be 3.6% using the SKDELMC model,
while it was 11.95 and 9.7% using the existing methods,
respectively. This indicates a significant reduction in the
false positive rate when by SKDELMC model. average of ten
results further supports the conclusion that the SKDELMC
model reduces false positive rate by 71% and 61% in crop
yield prediction, Gavahi, K., Abbaszadeh, P, & Moradkhani,
H. (2021), Bazrafshan, O., Ehteram, M., Latif, S. D., Huang, Y.
F., Teo, F. Y., Ahmed, A. N., & El-Shafie, A. (2022).

Prediction time

It is formulated as amount of time taken for accurate
prediction of future results through the data classification.
The prediction time is formulated as given below,

1, =[4,]°7(4) e

p
Where ’Tp’ denotes prediction time, d]1 represents
number of data and ’T[di] denotes time for classifying

single data. It is measured in milliseconds (mm:s).
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Figure 6: Graphical analysis of false positive rate
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Figure 7: Graphical analysis of prediction time

Figure 7 depicts graphical representation of prediction
time regarding a number of data. The graph shows that the
prediction time of all three techniques generally increases
as number of data enhances. However, comparatively,
SKDELMC model demonstrates a decreased prediction
time compared to the conventional methods. Reduction
in prediction time in the SKDELMC model is selection
of significant features from dataset. Technique applies
Stochastic Kernelized Quadratic Discriminant Analysis,
utilizing a Gaussian kernel, to identify the most informative
features. By focusing on these significant features, the
SKDELMC model reduces the computational burden and
improves the prediction process. According to the validation
results, the prediction time using the SKDELMC model is
reported to be reduced by 19% compared to DeepYield
and 9% compared to BMA. This suggests that the SKDELMC
model offers improved efficiency in terms of prediction time
compared to conventional methods, Gavahi, K., Abbaszadeh,
P, & Moradkhani, H. (2021), Bazrafshan, O., Enteram, M., Latif,
S.D., Huang, Y.F, Teo,F.Y.,, Ahmed, A.N., &El-Shafie, A. (2022).

Comparison of space complexity

Itis defined as amount of memory space consumed through

algorithm to perform accurate big data prediction. The

memory consumption is calculated using given formula,
s =[d_ ]*Ms [di] (14)

Where, ’Scom’ denotes the space complexity, ’dn
" represents the number of data and ’MS[di]' is the
memory consumed for single data. It is measured in terms
of Megabytes (MB).

The performance analysis of space complexity for a
proposed technique called SKDELMC in comparison to
two other methods, DeepYield and BMA. The analysis is
conducted using a range of data sizes from 4000 to 40000.
According to the results obtained, the space complexity of
SKDELMC is minimized compared to DeepYield and BMA.
Figure 8 shows that as the number of data increases, the space
consumption of all three methods, including SKDELMC, also
increases. But the SKDELMC model employed Gaussian
kernel Quadratic discriminant analysis to select a reduced
number of features for predictive analytics. This feature
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Figure 7: Graphical analysis of space compexity

selection approach resulted in a lesser amount of storage
space required during the prediction process. On average,
based on ten results, it is found that the space complexity
of the SKDELMC model is reduced by 18% compared to
DeepYield and 10% compared to BMA. These findings imply
that the SKDELMC model offers a more efficient use of
storage space for predictive analytics compared to the other
two methods, Gavahi, K., Abbaszadeh, P., & Moradkhani, H.
(2021), Bazrafshan, O., Enteram, M., Latif, S. D., Huang, Y. F,
Teo, F. Y., Ahmed, A. N., & EI-Shafie, A. (2022).

Conclusion

Big data refers to enormous volume, variety, in addition to
velocity of data that collects from a variety of sources. This
data is often distinguished by its complexity and entails
advanced techniques to process, analyze, and extract
significant information from it. Predictive analytics is the
significant approach used to analyze a large volume of data.
Agriculture is a well-known and improved application in
big data analytics. Health as well as output are monitored
through the application of big data predictive analytics
in precision agriculture with soil quality and weather-
conditional data. It leverages a deep learning technique
called the SKDELMC model introduced to analyze large
datasets and predict future behavior or events. To explore
these large datasets and make predictions, the SKDELMC
model, a deep learning technique, is introduced. This
technique enables the feature selection and analysis of big
data in precision agriculture. The feature selection process
is a crucial step in data analysis when dealing with large
datasets. It involves identifying the relevant features to
enhance accuracy and reduce the complexity of prediction.
Finally, the classification is done with the relevant features
using an extreme learning classifier to learn patterns and
relationships and make predictions or classify different
data. Comprehensive experimental evaluation is performed
through different performance metrics with respect to
a number of data. Overall performance metric analysis
illustrates that the presented SKDELMC model achieves
higher prediction accuracy and sensitivity with lesser
time, space complexity, and false positive rate than the
conventional methods.
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