A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.44Keywords:
Metaheuristic Optimization, Feature Selection, Machine Learning, Classifier Performance, Dimensionality Reduction, Support Vector Machines, Random Forests, Neural Networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In machine learning feature selection is a powerful stage of choosing a subset of features that are useful to increase performance while decreasing dimensionality. The rule of thumb in selecting feature subsets in classifiers is proposed in this paper using a new metaheuristic optimization algorithm, which intends to enhance classifier performance. The proposed method takes advantage of metaheuristic algorithms to better search and select the most important features that contribute to increasing classification performance, decreasing overfitting and increasing of speed of computation. We coordinate the optimization process with the diverse machine learning classifiers such as SVM, Random Forests, and Neural Networks to compare the performance of the chosen feature subsets. The current gist of the paper shows that benchmark results on suitable datasets show the outperformance of the proposed strategy over regular feature selection procedures, hence leading to enhanced classifier performance. Therefore, this research forms part of the existing knowledge in feature selection for improving classification performances in various machine learning algorithms by offering a reliable approach for determining and applying the best relevant features.Abstract
How to Cite
Downloads
Similar Articles
- Manish Kumar, Nirupama Prakash, Saket Bihari, The role of public-private partnerships in facilitating international migration of semi-skilled workers–A case study of Varanasi and nearby districts , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. N. Malleswari, P. V. S. Gupta, S. V. M. Vardhan, D. Ramachandran, Quantitative estimation of ethanol content in eribulin mesylate injection using headspace gas chromatographic with flame ionization detector [HS-GC-FID] , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Reena Lawrence, Kapil Lawence, Manisha Prasad, Ritika Singh, ANTIOXIDANT ACTIVITY OF METHANOL EXTRACT OF ZINGIBER OFFICINALE GROWN IN NORT INDIAN PLAINS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Rajesh Rayal, Riya Malik, Sanjay Madan, Anju Thapliyal, Drifting-Density and Diversity of Aquatic Mites in the Spring- Fed Stream Heval from Garhwal Himalaya , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ishwar Dan, Viksit Bharat @2047: A vision for India’s sustainable development , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Priya Rajwade, Alka Bansal, A study of the perceptions of teachers towards a holistic approach in teaching in CBSE board schools in the context of NEP 2020 at the foundational and preparatory stages , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- RUCHI SHARMA, YOUGESH KUMAR, STATISTICAL ANALYSIS OF MONOGENEAN POPULATIONS INFESTING FRESH WATER FISH CHANNA PUNCTATUS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Avdhesh Kumar, Manoj Agarwal, Studies on challenges and opportunities for foreign direct investment in the automobile industry in India , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 30 31 32 33 34 35 36 37 38 39 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper

