A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.44Keywords:
Metaheuristic Optimization, Feature Selection, Machine Learning, Classifier Performance, Dimensionality Reduction, Support Vector Machines, Random Forests, Neural Networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In machine learning feature selection is a powerful stage of choosing a subset of features that are useful to increase performance while decreasing dimensionality. The rule of thumb in selecting feature subsets in classifiers is proposed in this paper using a new metaheuristic optimization algorithm, which intends to enhance classifier performance. The proposed method takes advantage of metaheuristic algorithms to better search and select the most important features that contribute to increasing classification performance, decreasing overfitting and increasing of speed of computation. We coordinate the optimization process with the diverse machine learning classifiers such as SVM, Random Forests, and Neural Networks to compare the performance of the chosen feature subsets. The current gist of the paper shows that benchmark results on suitable datasets show the outperformance of the proposed strategy over regular feature selection procedures, hence leading to enhanced classifier performance. Therefore, this research forms part of the existing knowledge in feature selection for improving classification performances in various machine learning algorithms by offering a reliable approach for determining and applying the best relevant features.Abstract
How to Cite
Downloads
Similar Articles
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- S. Vnuchko, O. Batrymenko, О. Ткach, М. Karashchuk, M. Volkivskyi, Models of interaction between business and government in the conditions of the European integration course of Ukraine , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Afroz Alam, Krishna Kumar Rawat, Praveen Kumar Verma, Sonu Yadav, Bryodiversity of Eastern Ghats (India) , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Desalu Tamirat, Tesfaye Getachew , Worku masho, Zelalem Admasu , Morphological and morphometric features of indigenous chicken in North Shewa zone, Oromia regional state, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kunal Lanjekar, Prashant Kalshetti, Joe C. Lopez, Role of social media in lead generation , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Manohar, T. P. Vijayakumar, Optimization of gluten-free bread using RSM (Design Expert) to study its textural and sensory properties , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Joji John Panicker, Ancy Elezabath John, Nair Anup Chandrasekharan, A tapestry of tradition: Revitalization of Indian Heritage and Folk Art , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- SOMNATH BOSE, TOTAL SERUM CALCIUM AND EUMELANISM IN JUVENILE BANK MYNA, ACRIDOTHERES GINGINIANUS (LATHAM) , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Brijesh Pathak, Effects of Uranium on Growth Performance in Vigna unguiculata (L.) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper