A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.44Keywords:
Metaheuristic Optimization, Feature Selection, Machine Learning, Classifier Performance, Dimensionality Reduction, Support Vector Machines, Random Forests, Neural Networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In machine learning feature selection is a powerful stage of choosing a subset of features that are useful to increase performance while decreasing dimensionality. The rule of thumb in selecting feature subsets in classifiers is proposed in this paper using a new metaheuristic optimization algorithm, which intends to enhance classifier performance. The proposed method takes advantage of metaheuristic algorithms to better search and select the most important features that contribute to increasing classification performance, decreasing overfitting and increasing of speed of computation. We coordinate the optimization process with the diverse machine learning classifiers such as SVM, Random Forests, and Neural Networks to compare the performance of the chosen feature subsets. The current gist of the paper shows that benchmark results on suitable datasets show the outperformance of the proposed strategy over regular feature selection procedures, hence leading to enhanced classifier performance. Therefore, this research forms part of the existing knowledge in feature selection for improving classification performances in various machine learning algorithms by offering a reliable approach for determining and applying the best relevant features.Abstract
How to Cite
Downloads
Similar Articles
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Punithavathy E, N. Priya, A resilience framework for fault-tolerance in cloud-based microservice applications , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anupam Sinha, Rhizome Rot Disease of Ginger (Zingiber officinale Rosc.) and its Bio-control Strategy , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- ALKA SRIVASTAVA, SANJAY KUMAR, STUDY OF NUTRIENT VALUE IN POST HARVESTED INFECTED ORANGE (CITRUS SINENSIS) FRUIT , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Ritu Jain, Ritesh Tiwari, Shailendra Kumar, Ajay Kumar Shukla, Manish Kumar, Awadhesh Kumar Shukla, Description of Medicinal Herb, Perfume Ginger: Hedychium spicatum (Zingiberales: Zingiberaceae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- N Sasirekha, Jayakumar Karuppaiah, Yuvaraja Thangavel, KG Parthiban , Classification of mammograms by breast density , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Santosh T. Karmani, Sachin V. V. Acharekar, The impact of online degree programs on employment opportunities in contemporary India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Vishnu Prasad C, Ramaprabha D, An assessment of growth indicators and intricacies of Udyam entities in the post-pandemic era , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 20 21 22 23 24 25 26 27 28 29 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper