A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.44Keywords:
Metaheuristic Optimization, Feature Selection, Machine Learning, Classifier Performance, Dimensionality Reduction, Support Vector Machines, Random Forests, Neural Networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In machine learning feature selection is a powerful stage of choosing a subset of features that are useful to increase performance while decreasing dimensionality. The rule of thumb in selecting feature subsets in classifiers is proposed in this paper using a new metaheuristic optimization algorithm, which intends to enhance classifier performance. The proposed method takes advantage of metaheuristic algorithms to better search and select the most important features that contribute to increasing classification performance, decreasing overfitting and increasing of speed of computation. We coordinate the optimization process with the diverse machine learning classifiers such as SVM, Random Forests, and Neural Networks to compare the performance of the chosen feature subsets. The current gist of the paper shows that benchmark results on suitable datasets show the outperformance of the proposed strategy over regular feature selection procedures, hence leading to enhanced classifier performance. Therefore, this research forms part of the existing knowledge in feature selection for improving classification performances in various machine learning algorithms by offering a reliable approach for determining and applying the best relevant features.Abstract
How to Cite
Downloads
Similar Articles
- Seema Rani Sarraf, S.N. Dubey, STRESS AND ACADEMIC ACHIEVEMENT IN RELATION TO DURATION OF SLEEP AND COURSE , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ahmed Mustefa, Efficacy of coffee farmers’ cooperatives in Gimbo Woreda, Kafa Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sandip Sane, Diksha Tripathi, Nitin Ranjan, Digital transformation in management education: Bridging theory and practice , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Akshay J., G. Mahesh Kumar, B. H. Manjunath, Optimizing durability of the thin white topping applying Taguchi method using desirability function , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kirti Gupta, Parul Goyal, Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper