A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.06Keywords:
Assistant Professor, Department of Information Technology, Bishop Heber College(Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620024, TamilnaduDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The challenge of high-dimensional feature spaces and redundant attributes significantly impacts classification performance in medical datasets. Addressing this, the proposed Enhanced Correlation Attribute Evaluation (E-CAE) method effectively integrates multiple correlation measures such as Pearson, Spearman, Kendall, Biweight Midcorrelation, and Distance Correlation to rank and select the most relevant features. This hybrid feature selection technique was rigorously tested on three datasets: the Darwin dataset, Parkinson’s speech dataset, and Dyslexia dataset. The E-CAE method demonstrated superior classification performance across various models, achieving a remarkable 95.64% accuracy on the Darwin dataset, 93.42% accuracy on the Parkinson’s dataset, and 90.86% accuracy on the Dyslexia dataset. These results notably outperformed traditional feature selection techniques. The novelty of this approach lies in its composite scoring mechanism, which ensures robust feature evaluation and significantly enhances classification accuracy across diverse biomedical datasets.Abstract
How to Cite
Downloads
Similar Articles
- Sabana Backer, Prasanth A.P, The influence of attitude on green-cosmetics purchase intention (pi) in central Kerala , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Aarthi Monalisa M, Anli Suresh, Adoptive bancassurance models transforming patronization among the insured , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Pinkey Kumari Prasad, Kalidasan Varathan, Effect of concise arm rehabilitation for stroke patients approach vs modified constraint-induced movement therapy on hand functions in post stroke hemiparetic subjects , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Kamble Rajratna M., Kulkarni Pramod R., Existence and uniqueness of solutions for exponential fractional differential equations , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Anli Suresh, Sandhiya M., Investment model on the causation of inclining attributes towards bank investment options in the investor’s portfolio , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Desai Vishesh, Ritesh Patel, Assessing the influence of tax refunds and incentives on personal tax Reporting: A qualitative perspective , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Hemang Shah, Archana Gadekar, Artificial intelligence and intellectual property rights with special reference to patent and copyright , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Bhavikgiri Vishnugiri Goswami, Vaseemahmed G. Qureshi, Reclaiming identity: transgender perspectives on inclusion in contemporary India , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Sapna Pathakji, Shilpi Sharma, Transgender Persons (Protection of Rights) Act, 2019: A critical evaluation of rights access and implementation for the transgender community in India , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anita Mathew, Sneha Kanade, Fostering safe and inclusive workplace toward a sustainable and high-performing work culture , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 91 92 93 94 95 96 97 98 99 100 > >>
You may also start an advanced similarity search for this article.

