Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.05Keywords:
Data Imputation, Hot-Deck Fusion, Hybrid Methods, Lagrange Polynomial Interpolation, Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Data imputation is vital in preserving the quality of datasets in machine learning, where missing data leads to decreased model accuracy. This research proposes a new imputation method called Lagrange Polynomial Interpolation with Hot-Deck Fusion (LPIHD) to enhance the quality and reliability of imputed datasets, mainly when the data is multifaceted and comprises multiple types. LPIHD combines Lagrange Polynomial Interpolation and Hot-Deck Fusion. Lagrange Polynomial Interpolation estimates missing values using known data points. Hot-Deck Fusion refines these estimates by borrowing similar values from a donor population. This hybrid approach applied to two distinct datasets about wine quality and heart diseases, enhances precision by achieving lower MAE and RMSE values than those previously recorded. LPIHD achieved better accuracy for the wine quality and heart disease datasets, respectively, at varying rates of missing data. MAE and RMSE were also notably reduced across both datasets, affirming the method's efficacy. These findings suggest that LPIHD can produce better and more accurate data imputations, making it a helpful technique for the field that needs a strong analytical platform.Abstract
How to Cite
Downloads
Similar Articles
- Anitha Chandrashekhar, Shivali Bembalgi, Santhosh K. Malebennur, Serum Zinc and Copper Levels in Obese Adolescents , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Tursunova N. Isroilovna, Dilbar M. Almuradova, Orifjon A. Talipov, Features of diagnosing ovarian tumors in women of pre- and postmenopausal age , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shripada Patil, Sandeep N. Jagdale, Prashant Kalshetti, Management education system in the 21st century: Challenges and opportunities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Indrani Sengupta, Merilyn Gomes, Unveiling the divide: Analyzing critical thinking skills in literature and commerce students , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Evaluating the effectiveness of the Gyankunj Project: Teachers’ perceptions from Gujarat , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Chirag Darji, Rajesh Chauhan, Views of undergraduates on Vikshit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anurag B. Gohain1, Devanand Mishra, Vithou U Mera, Content analysis of academic library website with special reference to the central universities in Northeast India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deneshkumar V, Jebitha R, Jithu G, Multistate modeling for estimating clinical outcomes of COVID-19 patients , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 45 46 47 48 49 50 51 52 > >>
You may also start an advanced similarity search for this article.

