Neuroprotective effect of alcoholic extract of Selaginella bryopteris leaves in experimental models of epilepsy
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.14Keywords:
Antiepileptic, Selaginella bryopteris leaves Extract, Seizure Model, Neuroprotection, LC-MSDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Epilepsy, a neurological disorder, is characterized by recurrent, uncontrolled seizures due to an imbalance between inhibitory and excitatory neuronal interactions in the central nervous system (CNS). This study explores the neuroprotective effects of an alcoholic extract from Selaginella bryopteris leaves in experimental epilepsy models. Swiss albino mice (25–30 g) were used, and epilepsy was induced via pentylenetetrazol (PTZ, 60 mg/kg) and maximal electric shock (MES). The extract was administered orally at varying doses and compared with conventional antiepileptic drugs, phenytoin and diazepam. LC-MS analysis identified amentoflavone as a key bioactive compound with antiepileptic properties. The extract demonstrated significant dose-dependent protection in both PTZ and MES models, delaying convulsions in the PTZ model at 500 mg/kg, comparable to diazepam, and providing convulsion protection in the MES model similar to phenytoin. Additionally, the extract increased gamma-aminobutyric acid (GABA) and glutathione (GSH) levels while reducing lipid peroxidation (LPO) levels, indicating its neuroprotective properties. These findings suggest that S. bryopteris leaves possess significant antiepileptic properties and may serve as a promising treatment for epilepsy.Abstract
How to Cite
Downloads
Similar Articles
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- T. Kanimozhi, V. Gowtham Raaj, C. R. Santhosh, Impulsively intended buying behavior: A new horizon of shopping behavior in the online era , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- REKHA KHANDAL, SHILPENDRA KOUR, RASHMI TRIPATHI, ANTIBACTERIAL ACTIVITY OF PHYTO-CHEMICALS OBTAINED FROM LEAFEXTRACTS OF SOME MEDICINAL PLANTS ON PATHOGENS OF SEMI-ARID SOIL , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Parismita Bhagawati, Paramita Dey, Animal cruelty legislation in India: A green criminological exploration , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Amresh Kumar Singh, Manjit Singh Chhetri, Pushyamitra Mishra, Toughness and Ductile Brittle Transition Temperature of Different Mineral Filler Reinforced TPOs Composites , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.

