Bioremediation of Textile Dyes Using Native Microorganisms: Sustainable Microbiological Approaches
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.05Keywords:
Bioremediation, Textile dyes, Native microorganisms, Biosorption, Enzymatic degradation, Wastewater treatment, Environmental sustainability, Green technology.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Significant environmental difficulties are posed by the textile industry's heavy reliance on synthetic dyes. Dye pollutants in wastewater are detrimental and long-lasting, which is why they create these issues. Traditional approaches to treating textile effluents are ineffective in decomposing complex color compounds, and they can be prohibitively costly. To further the area of bioremediation as an ecologically and financially responsible option, this research investigates the possibility of naturally occurring microbes degrading and cleaning textile dyes. The ability of native fungi, bacteria, and algae to degrade various color chemicals through enzymes has demonstrated promise in their isolation from polluted settings. This study delves into the ways these microbes manage to repair hues. Oxidative pathways, biosorption, and enzymatic degradation are all thoroughly described. In addition, we look at the scalability and practicability of microbiological approaches in bioreactors, specifically looking at how these techniques may be used to treat industrial wastewater. Green technology, which seeks to lessen industrial waste and safeguard the environment, is a rapidly expanding field, and the results contribute to it.Abstract
How to Cite
Downloads
Similar Articles
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Mohiyuddeen Hafzal, Management strategies for sustainable development goals: A roadmap to Viksit Bharat@2047 , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rashika R. Singh, Nimish Gupta, G. R. Yadav, Scope of electric vehicles and the automobile industry in Indian perspective , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jivesh Jha, Sonia D Sharma, Role of law to combat ecological imbalance in Nepal , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- M. Deepika, I Antonitte Vinoline, Optimization of an Advanced Integrated Inventory Model Considering Shortages and Deterioration across Varying Demand Functions , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rama Shankar Dubey, M.A. Naidu, Ajay Kumar Shukla, Awadhesh Kumar Shukla, Manish Kumar, Sonia Verma, Pramod Kumar Mourya, Application of Bioactive Molecules in the Treatment and Management of Type-1 Diabetic Disease , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

